Energy and angular distributions of electrons in $2\beta 0\nu$ decay due to right-handed currents

Vladimir I. Tretyak

Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine

Abstract

Formulae are presented which are used in the DECAY0/GENBB event generator for generation of events in $2\beta 0\nu$ decay due to right-handed currents. Distributions are shown for all 2β isotopes currently in use in the NEMO-3 set-up.

1 Formulae for energy and angular distributions

In that follows, mainly the paper of Doi et al., 1988 [1] will be used, where approximations for energy and angular distributions of electrons emitted in neutrinoless 2β decay were considered. It summarizes and simplifies earlier works of the same authors [2, 3, 4] (see also [5, 6, 7]).

Sampling of energies and angles of e^- or e^+ in $2\beta 0\nu$ decay is based on 2-dimensional distribution $\rho_{1\theta}(t_1, \cos \theta)$ from which 1-dimensional distribution $\rho_1(t_1)$ is calculated [8]:

$$\rho_1(t_1) = \int_0^\pi \rho_{1\theta}(t_1, \cos\theta) \, d(\cos\theta). \tag{1}$$

Here t_i is the kinetic energy of the *i*-th e⁻ or e⁺, and θ is the angle between the particle directions. The energy of the first e⁻ or e⁺ is sampled in accordance with $\rho_1(t_1)$. The energy of the second particle, because of energy conservation, is just calculated as $t_2 = t_0 - t_1$, where t_0 is the energy available in the 2β process (all energies here are in units of the electron mass m_0c^2). Finally the angle θ is sampled from $\rho_{1\theta}(t_1, \cos \theta)$ with fixed t_i , supposing isotropic emission for the first particle [8].

The momentum of the *i*-th electron, p_i , which appears in the formulae below, is given by $p_i = \sqrt{t_i(t_i + 2)}$ (in units of $m_0 c$) and its velocity, β_i , by $\beta_i = p_i/e_i$ (in units of c) where $e_i = t_i + 1$ is total energy of *i*-th particle. The Fermi function is defined as

$$F(t,Z) = const \cdot p^{2\gamma-2} \exp(\pi s) | \Gamma(\gamma + is) |^2,$$
(2)

where $\gamma = \sqrt{1 - (\alpha Z)^2}$, $s = \alpha Z e/p$, $\alpha = 1/137.036$ is fine structure constant, Z is the atomic number of the daughter nucleus (Z > 0 for β^- and Z < 0 for β^+ decay) and Γ the gamma function¹.

¹In the Primakoff-Rosen approximation $F(t, Z) \sim e/p$, which is adequate only for Z > 0 (β^- and $2\beta^-$ decays).

In accordance with [1], for $2\beta 0\nu$ decay and $0^+ - 0^+$ transition $\rho_{1\theta}(t_1, \cos\theta)$ is equal:

$$\rho_{1\theta}(t_1, \cos \theta) = e_1 p_1 F(t_1, Z) e_2 p_2 F(t_2, Z) (A(t_1) + B(t_1) \cdot \beta_1 \beta_2 \cos \theta), \tag{3}$$

where A(t) and B(t) depend on mechanism of 2β decay.

If to work only with one of three mechanisms of $2\beta 0\nu$ decay (due to non-zero neutrino mass, or λ , or η terms in right-handed currents) at one time independently (as it is implemented in the GENBB/DECAY0 event generator), A(t) and B(t) will be given below; working with all three mechanisms simultaneously, A(t) and B(t) will be more complex including different interference terms, see [1].

(1) For neutrino mass mechanism, A_m and B_m don't depend on electron energy and are equal:

$$A_m(t_1) = 1, \quad B_m(t_1) = -1.$$
 (4)

It gives simple distribution:

$$\rho_{1\theta}(t_1, \cos \theta) = e_1 p_1 F(t_1, Z) e_2 p_2 F(t_2, Z) (1 - \beta_1 \beta_2 \cos \theta), \tag{5}$$

which is used in the GENBB/DECAY0 code already many years [8].

(2) For mechanism related with the λ term in right-handed currents, A_{λ} and B_{λ} are sum of products of some functions of electron energy and nuclear matrix elements:

$$A_{\lambda}(t_1) = A_1 \chi_{2-}^2 + A_2 \chi_{2-} \chi_{1+} + A_3 \chi_{1+}^2, \tag{6}$$

$$B_{\lambda}(t_1) = \frac{1}{2}(e_1 - e_2)^2 \chi_{2-}^2 - \frac{4}{81} \chi_{1+}^2.$$
(7)

Here A_i are functions of electron energy determined as:

$$A_1 = \frac{1}{2} \frac{(e_1 e_2 - 1)(e_1 - e_2)^2}{e_1 e_2},$$
(8)

$$A_2 = -\frac{2}{9} \frac{(e_1 - e_2)^2}{e_1 e_2},\tag{9}$$

$$A_3 = \frac{2}{81} \frac{e_1 e_2 - 1}{e_1 e_2}.$$
(10)

Terms χ_{1+} and χ_{2-} are combinations of ratios $\chi_{\alpha} = M_{\alpha}/M_{GT}$ of different nuclear matrix elements (NME) M_{α} to Gamow-Teller NME M_{GT} :

$$\chi_{1\pm} = \chi'_{GT} \pm 3\chi'_F - 6\chi'_T, \tag{11}$$

$$\chi_{2\pm} = \chi_{GT\omega} \pm \chi_{F\omega} - \frac{1}{9}\chi_{1\mp}.$$
(12)

In the last equation $\chi_{1\mp}$ was written instead of $\chi_{1\pm}$ in formula (3.5.16) in Ref. [4], in accordance with further correction (see footnote on page 146 in Ref. [7]).

The ratios $\chi_{\alpha} = M_{\alpha}/M_{GT}$ of different NMEs M_{α} to the Gamow-Teller NME M_{GT} are defined in Eqs. (3.5.2 - 3.5.9) of Ref. [4]². All these 6 NMEs should be calculated for each nucleus of interest before to be used in Eqs. (6) and (7).

Such a situation is slightly inconvenient: (1) if the χ_i values were not calculated in some theoretical works for specific nucleus, you cannot calculate the $\rho_{1\theta}(t_1, \cos \theta)$ distribution (and generate events of $2\beta 0\nu$ decay); (2) values of NMEs calculated by different authors surely will be different and, thus, $\rho_{1\theta}(t_1, \cos \theta)$ also will be different.

However, in case of the λ term in right-handed currents, it is possible to make further simplifications. In accordance with Ref. [4] (see page 69), the term χ_{2-} gives the main contribution. Further, approximating the $e_1e_2 - 1$ by e_1e_2 in Eq. (8) (i.e. neglecting by electron mass in comparison with beta particle total energies), we will obtain

$$A_{\lambda} = B_{\lambda} = \frac{1}{2} (e_1 - e_2)^2 \chi_{2-}^2, \qquad (13)$$

and

$$\rho_{1\theta}(t_1, \cos \theta) = e_1 p_1 F(t_1, Z) e_2 p_2 F(t_2, Z) (e_1 - e_2)^2 (1 + \beta_1 \beta_2 \cos \theta).$$
(14)

This approximation was implemented in the GENBB/DECAY0 event generator also many years ago and is used up to date.

(3) For mechanism related with the η term in right-handed currents, situation is more complex:

$$A_{\eta}(t_1) = A_1 \chi_{2+}^2 + A_2 \chi_{2+} \chi_{1-} + A_3 \chi_{1-}^2 + A_4 \chi_R^{\prime 2} + A_5 \chi_R^{\prime} \chi_P^{\prime} + A_6 \chi_P^{\prime 2}, \tag{15}$$

$$B_{\eta}(t_1) = \frac{1}{2}(e_1 - e_2)^2 \chi_{2+}^2 - \frac{4}{81}\chi_{1-}^2 + \frac{8}{r^2}(\frac{\zeta}{6}\chi'_P - \chi'_R)^2 - \frac{8}{9}\chi'_P^2, \tag{16}$$

where additional functions A_i are:

$$A_4 = \frac{8}{r^2} \frac{e_1 e_2 + 1}{e_1 e_2},\tag{17}$$

$$A_5 = -\frac{8}{3r^2} \frac{1}{e_1 e_2} (\zeta(e_1 e_2 + 1) - 2re_0), \tag{18}$$

$$A_6 = \frac{2}{9r^2} \frac{1}{e_1 e_2} [(\zeta^2 + 4r^2)(e_1 e_2 + 1) - 4\zeta r e_0].$$
⁽¹⁹⁾

Here appear ratios χ'_R , χ'_P of two additional NMEs to the Gamow-Teller NME. Product $r = m_0 c^2 \cdot R_A$ with $R_A = 1.2\sqrt[3]{A}$ fm is equal

$$r = 3.107526 \cdot 10^{-3} \sqrt[3]{A},\tag{20}$$

and

$$\zeta = 3\alpha Z + re_0. \tag{21}$$

Once again, to calculate distribution $\rho_{1\theta}(t_1, \cos \theta)$, we should know 8 NMEs calculated for our nucleus of interest. More often (see Ref. [4], page 69) η distribution is of "mountain" type (as for m_{ν} term, Eq. (5)), however sometimes cancellation between NMEs could result also in "valley" type distribution (as for λ term, Eq. (14)). See examples on Fig. 6.7 of Ref. [4], where energy distribution of single electrons for ⁴⁸Ca is of "valley" type while for ⁷⁶Ge it is of "mountain" type. Angular distribution generally is of $1 + \beta_1 \beta_2 \cos \theta$ type, as for λ term.

²Sometimes notations χ_{Fq}, χ_{GTq} are used instead of χ'_F, χ'_{GT} , respectively.

2 Energy distributions for the NEMO-3 isotopes

Below we give values of the NME ratios χ_{α} calculated in theoretical works [9, 6, 10] (where they were calculated for bigger set of 2β decaying nuclides) and draw corresponding energy distributions for m_{ν} , λ and η terms for isotopes currently investigated in the NEMO-3 setup: ⁴⁸Ca, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd (and also for ⁷⁶Ge). In addition, the χ_{α} values for different isotopes also can be found f.e. in: [3] (⁷⁶Ge, ¹³⁰Te), [4] (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹²⁸Te, ¹³⁰Te), [5] (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹²⁸Te, ¹³⁰Te), [11] (⁷⁶Ge), [12] (⁷⁶Ge), [13] (⁷⁶Ge), [14] (⁴⁸Ca, ⁷⁶Ge, ¹⁰⁰Mo, ¹²⁸Te, ¹³⁰Te), [15] (⁴⁸Ca, ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe).

Table 1: Ratios $\chi_{\alpha} = M_{\alpha}/M_{GT}$ of different nuclear matrix elements M_{α} to the Gamow-Teller NME M_{GT} calculated in [9] (pnQRPA), [6] (QRPA) and [10] (QRPA without proton-neutron pairing). Values of χ'_R [10] are calculated multiplying the χ_R values [10] by factor $m_0 c^2 R_A/4$.

		⁴⁸ Ca	⁷⁶ Ge	⁸² Se	⁹⁶ Zr	¹⁰⁰ Mo	¹¹⁶ Cd	¹³⁰ Te	¹⁵⁰ Nd
$\chi_{GT\omega}$	[9]	_	0.966	0.964	-	1.743	_	0.980	0.989
	[6]	_	0.951	0.952	_	0.968	_	0.948	0.943
	[10]	1.057	0.916	0.960	0.845	0.683	0.859	0.895	-
$\chi_{F\omega}$	[9]	_	-0.340	-0.330	_	-1.596	_	-0.348	-0.383
	[6]	_	-0.262	-0.258	-	-0.304	_	-0.268	-0.280
	[10]	-0.437	-0.038	-0.013	-0.130	-0.709	-1.032	0.001	
χ'_{GT}	[9]	_	0.645	0.350	_	-1.501	_	0.612	0.584
	[6]	_	1.049	1.048	_	1.032	_	1.052	1.057
	[10]	0.975	1.077	1.050	1.143	1.174	1.074	1.097	-
χ'_F	[9]	_	-0.351	-0.339	_	-1.522	_	-0.345	-0.374
	[6]	_	-0.318	-0.314	_	-0.363	_	-0.331	-0.352
	[10]	-0.504	-0.035	-0.004	-0.168	-0.817	-1.173	-0.007	-
χ'_T	[9]	_	-0.203	-0.277	-	-1.079	_	-0.230	-0.270
	[6]	_	-0.230	-0.248	_	-0.470	_	-0.231	-0.333
	[10]	-0.212	0.244	0.079	0.121	-0.477	-0.812	0.282	-
χ'_P	[9]	_	-0.176	-0.176	_	1.549	_	-0.155	0.235
	[6]	_	-0.485	-0.525	_	0.528	_	-0.496	0.626
	[10]	0.168	-1.147	-0.049	-0.836	-3.843	-3.891	-1.451	-
χ'_R	[9]	_	1.192	1.174	_	5.934	-	1.499	1.647
	[6]	_	70.3	71.2		84.6	_	79.6	72.2
	[10]	0.486	0.635	0.419	0.405	0.379	-0.574	0.586	

Single electron energy distributions for the NEMO-3 2β isotopes are shown in Fig. 1. Distributions are calculated as $\rho_1(t_1) = e_1 p_1 F(t_1, Z) e_2 p_2 F(t_2, Z) \cdot A(t_1)$ (term $B(t_1)$ disappears after integration in θ) with $A(t_1)$ determined by Eq. (4) for m, by Eq. (13) for rhc- λ and by Eq. (15) for rhc- η mechanisms of 2β decay.

Figure 1: Single electron energy distributions for m, rhc- λ and rhc- η mechanisms of $2\beta 0\nu$ decay for the NEMO-3 isotopes. Area under each curve is normalised to 1.

3 Discussion and conclusion

As one can see in Fig. 1, single electron energy distributions for all the NEMO-3 isotopes for the rhc- η term are very close to the energy distributions related with the neutrino mass mechanism for NME's calculated in [9, 6, 10]. The ratio $B_{\eta}(t_1)/A_{\eta}(t_1)$, which defines angular correlation between the emitted electrons, is always positive and close to 1 (from 0.83 to 1.01) for all energies, and nuclides and NME's listed in Table 1. Thus we could suppose that for the rhc- η term the following approximation will be good:

$$\rho_{1\theta}(t_1, \cos \theta) = e_1 p_1 F(t_1, Z) e_2 p_2 F(t_2, Z) (1 + \beta_1 \beta_2 \cos \theta)$$
(22)

(especially it could be very useful if for some specific isotope NME's were not calculated).

Current version of the GENBB/DECAY0 event generator gives possibility to generate 2β decay with rhc- η term (in addition to previous m and rhc- λ mechanisms) in accordance with approximation (22), but generation with more complex expression (3) with A_{η} and B_{η} defined in Eqs. (15, 16) is also available. User in this case should supply values of NME's, which he likes, in external file. This file should have 3 lines; the first 2 lines are comments, and in line 3 values of NME's should be given in the following order (as in Table 1): $\chi_{GT\omega}, \chi_{F\omega}, \chi'_{GT}, \chi'_F, \chi'_T, \chi'_P, \chi'_R^3$. Example of distribution generated by the GENBB/DECAY0 with all NME's equal to 0 except of $\chi'_T \neq 0$ is given in Fig. 2.

Author is grateful to J. Suhonen for useful discussions.

³For cases listed in Table 1 all the files are given with the GENBB/DECAY0 code.

Figure 2: Single electron energy distributions and sum of electron energies – theoretical and generated with the GENBB/DECAY0 – for the rhc- η mechanism of ¹⁰⁰Mo 2 β decay with all the NME's equal to 0 except of $\chi'_T \neq 0$.

References

- M. Doi, T. Kotani, E. Takasugi, Approximations for double-beta-decay formulas, Phys. Rev. C 37 (1988) 2104.
- [2] M. Doi, T. Kotani, H. Nishiura, E. Takasugi, *Double beta decay*, Prog. Theor. Phys. 69 (1983) 602.
- [3] M. Doi, T. Kotani, H. Nishiura, E. Takasugi, The energy spectra and the angular correlation in the $\beta\beta$ decay, Prog. Theor. Phys. 70 (1983) 1353.
- [4] M. Doi, T. Kotani, E. Takasugi, Double beta decay and Majorana neutrino, Prog. Theor. Phys. Suppl. 83 (1985) 1.
- [5] W.C. Haxton, G.J. Stephenson, Jr., Double beta decay Prog. Part. Nucl. Phys. 12 (1984) 409.
- [6] T. Tomoda, Double beta decay, Rep. Prog. Phys. 54 (1991) 53.
- [7] M. Doi, T. Kotani, Neutrinoless modes of double beta decay, Prog. Theor. Phys. 89 (1993) 139.
- [8] Yu.G. Zdesenko, V.I. Tretyak, Calculation of angular and energy distributions of electrons passed through matter by Monte Carlo method (the TRACK program), Preprint KINR 86-43, Kiev, 1986 (in Russian);

V.I. Tretyak, Monte Carlo algorithms in simulation of 2β decay and passage of electrons through matter, Preprint KINR 92-8, Kiev, 1992 (in Russian);
V.I. Tretyak, Models of decay of natural radioactive nuclides, Note NEMO 2/92, LAL, Orsay, 1992;
V.I. Tretyak, Current possibilities of events generation in GENBB code, Note NEMO 6/93, LAL, Orsay, 1993;
R. Arnold, V.I.Tretyak, The NEMO 3 simulation program: Current status, Preprint CRN 97-01, Strasbourg, 1997.

- [9] K. Muto, E. Bender, H.V. Klapdor, Nuclear structure effects on the neutrinoless double beta decay, Z. Phys. A 334 (1989) 187.
- [10] G. Pantis, F. Simkovic, J.D. Vergados, A. Faessler, Neutrinoless double beta decay within the quasiparticle random-phase approximation with proton-neutron pairing, Phys. Rev. C 53 (1996) 695.
- [11] T. Tomoda et al., Neutrinoless $\beta\beta$ decay and a new limit on the right-handed current, Nucl. Phys. A 452 (1986) 591.
- [12] J. Suhonen, S.B. Khadkikar, A. Faessler, Confined quarks and the neutrinoless ββ decay, Phys. Lett. B 237 (1990) 8.
- [13] J. Suhonen, S.B. Khadkikar, A. Faessler, Calculation of the neutrinoless $\beta\beta$ decay of ⁷⁶Ge using a quark model with harmonic confinement, Nucl. Phys. A 529 (1991) 727.
- [14] G. Pantis et al., Description of the $0\nu\beta\beta$ decay of ${}^{48}Ca$, ${}^{76}Ge$, ${}^{100}Mo$, ${}^{128,130}Te$, J. Phys. G 18 (1992) 605.
- [15] G. Pantis, J.D. Vergados, Neutrinoless double β-decay: A symbiosis of nuclear and particle physics, Phys. Rep. 242 (1994) 285.