Scintillating CaWO₄ Crystals for CRESST-II and EURECA

CaWO₄ Crystals for Rare Event Searches

- Current target material in CRESST-II (since July 2013 ≈5.5kg)
- Planned as target material for EURECA (Phase I≈75kg, Phase II≈500kg)
- Suppliers: GPI RAS (Russia), SRC "CARAT" (Ukraine), ...
- In house production at TUM since 2011
- Multi-material target
 - W (A=184): Good sensitivity for coherent scattering ($\sigma_{coh} \sim A^2$)
 - Ca, O: Sensitivity to light WIMPs
 - ¹⁸³W (14%): some sensitivity to spin-dependent scattering
 - ⁴⁸Ca (0.2%): candidate for 0v2 β

Crystal Properties

Property	Value
Density	6.1g/cm ³
Melting point	1600°C
Hardness	4.5-5 Mohs
Cleavage planes	distinct on {101}, indistinct on {001}
Space group	I4 ₁ /a
Cell parameters	a=5.242Å, c=11.372Å

Unit cell of CaWO₄

Naturally occurring scheelite crystal (China)

Optical and Scintillation Properties

Property	Value
Refractive index	1.95
Birefringence	δ≈0.017
Luminescence center	WO ₄ ²⁻
Emission maximum	420nm
Light Yield (at RT)	16,000-20,000ph/MeV ^{1,2} (≈40% of NaI(TI))
Decay time (at RT)	9µs

Nature 53, 470 (1896)	CaWO₄ under UV excitation	Emission spectrum
NOTES. LORD KELVIN has communicated to us the following tele- gram which he has received from Edison : "Just found calcium tungstate properly crystallised gives splendid fluorescence with Röntgen rays far exceeding platino-cyanide rendering photo- graphs unnecessary."		800 700 600 500 500 500 500 500 500 5
¹ M. Moszynski et al., NIM A 553, 578-591 ² M. v. Sivers et al., Opt. Mat. 34, 1843–1848	\mathcal{O}	B 300 200 100 900 350 400 450 500 550 800 650 700 wavelength [rm]

Scintillation Properties at Low Temperatures 2.2

- ≈70% increase of LY at low • temperatures
- Increase of main decay time to • ≈350µs, appearance of long decay component (≈2ms)
- PSD between alpha and ulletgamma particles possible
- α/γ quenching factor ≈ 0.22 \bullet

Measurements in collaboration with P. Di Stefano (Queen's University)

temperature [K]

LY vs. temperature

Czochralski Growth at TUM

- Cyberstar Oxypuller 20-04 Czochralski furnace
 - 80mm/120mm diameter Rh crucibles
 - Continuous weighing of crystal during growth → automatic adjustment of heating power by PI controller
 - After-heater on top of crucible
 → lower risk of cleavage due to thermal stress during cooling
 - Growth under flow of 99% Ar, 1% $O_2 \rightarrow$ reduce oxygen deficiency of crystals

Grown Ingots

Raw ingot "Bernhard I"

- m=890g
- d=44mm, h=65mm (cylindrical part)

Cylindrical detector crystal

- m=300g
- d=40mm, h=40mm

Annealing Process

- After-growth annealing under O₂-flow at 1450°C, 72h
 - Reduction of internal stresses
 - Filling of oxygen vacancies $V_{O}^{\star} + \frac{1}{2}O_{2} \rightarrow O_{O}^{\times} + 2h^{\star}$
 - ➢ Decrease of absorption coefficient by factor ≈6
 - ➢ Increase of light yield by ≈40%
 - Absorption band @400nm possibly due to O⁻ centers

Transmission measurement

²⁴¹Am spectrum (59.5keV)

M. v. Sivers et al., Opt. Mat. 34, 1843–1848

Influence of Annealing

Influence of Crystal Shape

- Cylindrical Crystal
 - Position dependence of light collection → degraded resolution
- Cubic Crystal

•

- Less position dependence → improved resolution
- Possibly higher light collection in cryogenic detector module
- Higher packing density possible

Surface Roughening

- For scintillating bolometers no optical coupling to light detector possible
 - Large fraction of light trapped in crystal (~60% for cylindrical crystal)
- Mechanical roughening of crystal surfaces (grain size ≈9µm) reduces light trapping
 - Increases light collection efficiency
 - Reduces position dependence of light collection

²⁴¹Am spectrum (59.5keV)

Light Yield of Crystals

- Light yield measurements at RT in comparison to reference crystal
 - Better light yield of crystals from external suppliers (especially GPI) due to smaller absorption coefficient

Setup for light yield measurements

Crystal	Light Yield	Attenuation length (@ 420nm)
Jakob II (TUM)	99%	10cm
Dimitri (Ukraine)	111%	23cm
Zora (GPI Russia)	130%	167cm

Transmission measurement

Raw Materials for Crystal Growth

- CaWO₄ powder prepared by solid state reaction at 1200°C from high purity CaCO₃ (5N) and WO₃ (4N8) powders CaCO₃+ WO₃ → CaWO₄+ CO₂
- Main radioactive contamination in CaCO₃

- ²²⁶Ra, ⁹⁰Sr due to similar chemical properties to Ca

Isotope	Activity (mBq/kg)			
	CaCO ₃	WO ₃	CaWO ₄	
²³² Th	<18	<1.4	<8.9	
²³⁸ U	<180	<468	<450	
²²⁶ Ra	13±5	<2.2	28±6	
⁴⁰ K	<90	<20	<65	
¹³⁷ Cs	<6	<1.2	<5.5	
⁶⁰ Co	<4	<0.68	<2.6	

measurements by J. Puimedon at LSC

Segregation of Radioimpurities

- Impurities are usually rejected by the crystal during growth and accumulate in the melt
 - Concentration of impurities in the crystals increases with increasing growth number if residual melt is reused
 - Estimated segregation coefficients s=c_{crys}/c_{melt}

s_{Ra226}<0.12 s_{U238}≈0.3¹

Screening results from y-spectrometry

Measurements by M. Laubenstein at LNGS

¹F.A. Danevich et al., NIM A 631, 44-53 (2011)

Alpha Activity of Crystals

- Two TUM crystals (≈300g) were operated as lowtemperature detectors in CRESST test cryostat at LNGS (t_{meas}≈100-400h)
- Total alpha activity was compared to all bought crystals that were operated in last CRESST run (Diploma thesis of A. Münster)
 - Total alpha activity of TUM crystals is in the range of radiopurest CRESST crystals (~1-2mBq/kg)

Crystal	Total alpha activity (mBq/kg)
Rudolph VI (TUM)	0.91±0.10
Wilhelm (TUM)	1.97±0.13
Daisy (GPI Russia)	2.38±0.02
Maja (GPI Russia)	66.16±0.11
SRC CARAT ¹	≈400
¹ Y Zdesenko et al NIM A	538 657-667

Alpha Spectra of Crystals

- Alpha spectrum from operation as low-temperature detector
- TUM crystal Wilhelm
 - Equilibrium of U-238 chain broken
 - Activity dominated by Th-230 and Po-210
- GPI crystal Rita
 - Larger contribution from rest of U-238 chain and Th-232/ U-235 chains to total activity

Alpha spectrum of crystal Wilhelm (TUM)

Alpha spectrum of crystal Rita (GPI)

Summary & Outlook

- Since 2011: Successful production of 300g CaWO₄ detector crystals at TUM
- 4 TUM crystals are installed in the current CRESST run (running since July 2013)
- Good radiopurity (total alpha activity: ≈1-2mBq/kg)
 - Future improvement by e.g. chemical separation of Sr, recrystallization
- Further improvement of Light Yield (transmittance) necessary
 Vary stoichiometry of melt
- Future: Production of 1kg detector crystals for EURECA

Backup Slides

Growth Flow Chart

 TUM-13
 TUM 16
crucible cleaned after growth nr. 19
refilled with fresh $CaWO_4$ powder
TUM-20
TUM-22
TUM-27 (Rudolph VI)
crucible cleaned after growth nr. 31
refilled with parts from crystals of growths nr. $21, 29$
TUM-40 (Wilhelm)

Light Yield Plots

LightYield $^{-}/\gamma$ ρ 0.8 α 's 0.6 0.4 ۰**.**... 14 0.2 6000 7000 8000 0 1000 2000 3000 4000 5000 Energy of Rudolf VI [keV]

Crystal Rudolph VI (TUM)

Crystal Rita (GPI Russia)

Alpha Activities in CRESST Crystals

crystal	counts	$A_{lpha, ext{ total }} [ext{mBq/kg}]$
Rita	76138	10.21 ± 0.04
Daisy	17589	2.38 ± 0.02
Maja	342289	66.16 ± 0.11
Zora	237245	29.68 ± 0.06
VK33	64067	9.91 ± 0.04
Sabine	14450	2.35 ± 0.02
Wibke	174097	25.54 ± 0.06
Verena	65048	11.25 ± 0.04
K07	122732	19.45 ± 0.06

	Rita		Daisy		Ma	ja (VK37)
isotope	counts	A [mBq/kg]	counts	A [mBq/kg]	counts	A [mBq/kg]
144Nd	< 12	< 0.002	110	0.015 ± 0.001	< 2	$< 4 \cdot 10^{-4}$
152Gd	< 25	< 0.003	68	0.009 ± 0.001	< 2	$< 4 \cdot 10^{-4}$
147Sm	674	0.090 ± 0.003	6288	0.850 ± 0.011	135	0.026 ± 0.002
180W	232	0.031 ± 0.002	229	0.031 ± 0.002	85	0.016 ± 0.002
²³² Th	1663	0.230 ± 0.005	284	0.038 ± 0.002	1490	0.288 ± 0.007
238U	229	0.031 ± 0.002	259	0.035 ± 0.002	776	0.150 ± 0.005
²³⁰ Th	8036	1.077 ± 0.012	589	0.080 ± 0.003		
234U	5366	0.710 ± 0.010	795	0.008 ± 0.004	111782	21.605 ± 0.065
226 _{Ra}	0000	0.715 ± 0.010	120	0.030 ± 0.004		
210mBi	126	0.017 ± 0.002	51	0.007 ± 0.001	2015	0.390 ± 0.009
²³¹ Pa	1158	0.155 ± 0.005	78	0.011 ± 0.001	2010	0.330 ± 0.003
210 Po ext	698	0.094 ± 0.004	504	0.068 ± 0.003		
210 Po int	18690	2.506 ± 0.018	809	0.109 ± 0.004	111611	21.572 ± 0.065
228Th	2995	0.402 ± 0.007	306	0.041 ± 0.002		21.012 1 0.000
222 Rn	5159	0.692 ± 0.010	468	0.063 ± 0.003		
224 _{Ra}	2900	0.388 ± 0.007	270	0.037 ± 0.002	7667	1.482 ± 0.017
²²³ Ra	4924	0.660 ± 0.009	1498	0.203 ± 0.005	1001	1.102 1 0.011
218Po	12.298	1.648 ± 0.015				
²²⁷ Th	12200	1.010 1 0.010	2254	0.305 ± 0.006	94 440	18.253 ± 0.059
212Bi (36%)	932	0.125 ± 0.004				
220 Rn	934	0.125 ± 0.004	123	0.017 ± 0.001	1037	0.200 ± 0.006
211Bi	7325	0.982 ± 0.011	1665	0.225 ± 0.006	4763	0.921 ± 0.013
216Po	228	0.031 ± 0.002	< 10	< 0.001	1100	0.021 ± 0.010

Alpha Spectra of CRESST Crystals

Radiopurity of Crystals from γ-Spectrometry

- Offcut of raw Ingot screened with HPGe detector
 - TUM crystal shows small
 ¹³⁷Cs contamination
 (~1.6mBq/kg)
 - Lower ²²⁶Ra activity compared to CARAT crystal

Isotope	Activity (mBq/kg)		
	TUM ²	GPI Russia ²	SRC "CARAT" ¹
²²⁸ Th	<1.8	<4	0.6±0.2
²²⁸ Ac	<1.4	-	-
^{234m} Pa	<47	<90	14.0±0.5
²²⁶ Ra	<1.6	<6	5.6±0.5
⁴⁰ K	<8.7	<17	<12
¹³⁷ Cs	1.6±0.5	<1	<0.8
⁶⁰ Co	<0.3	<2	-

¹Y. Zdesenko et al., NIM A 538, 657-667 ²Measurements by M. Laubenstein at LNGS

Natural Decay Chains

Figure A.2: Full decay chain of ²³²Th. All branchings with a branching ratio less than 1% are neglected. The half-lives of the radioisotopes are given, as well as the Q-values of the decays.

Figure A.1: Full decay chain of ²³⁸ U. All branchings with a branching ratio less than 1% are neglected. The half-lives of the radioisotopes are given, as well as the Q-values of the decays. Note that in the decay of ²³⁴ Th the isotope ²³⁴ Pa is populated in an isomeric state, which does not de-excite to the ground state, but undergoes a β^- -decay into ²³⁴ U in 99.84% of all cases.

Light Trapping in Cylinder

Influence of Surface Roughening on Transmittance

- Critical angle for total internal reflection θ_c≈30°
- Roughness with correlation length T and height distribution σ greater than wavelength λ
 - \succ Prevention of total internal reflection for incident angles $> \theta_c$

M. Nieto-Vesperinas and J. A. Sanchez-Gil, J. Opt. Soc. Am. A 9, 424 (1992).

Influence of Growth Atmosphere

Crystal grown under pure N₂ atmosphere

Crystal grown under 99% Ar, 1% O₂ atmosphere

Luminescence Spectra

Excitation spectra

Emission spectra

