

FACULTY OF SCIENCE

Kepler Center for Astro and Particle Physics

Temperature Dependent Light Output of Scintillating Crystals

Outline

Dark Matter direct detection with CRESST

Nal: alternative scintillating material for CRESST?

Relative light output measurements

Conclusion and outlook

Martin Uffinger

Dark Matter Direct Detection

With the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST)

Measurement of deposited energy in a scintillating material via off scattering target nuclei.

High background suppresion required!

CRESST @ LNGS

- 3500m w.e. rock overburden
- Passive shieldings against radioactivity

Passive background reduction not sufficient

→ Active event-by-event discrimination

CRESST Detector Modules

E = total deposited energy

L = scintillation light

Event Discrimination

Light Yield (LY) = L/E

Characteristic of the event type

- LY(e-recoil):1 by definiton
- LY(alpha) ~ 0.22
- $-LY(O) \sim 0.1$
- LY(Ca) ~ 0.06
- $-LY(W) \sim 0.04$

 Excellent discrimination between potential signal events (nuclear recoils) and dominant radioactive background (e-recoils)

Light/Energy vs Charge/Energy

- Only small variety of semiconductor materials for direct Dark Matter search (Si, Ge)
- Large variety of scintillating materials available
- Different target nuclei to investigate Dark Matter properties and interaction mechanism (e.g. scaling factors)

Investigation of

- temperature dependent relative light yield
- phonon properties of alternative scintillating crystals at the University of Tübingen

DAMA annual modulation signal

- DAMA uses NaI(TI) crystals to investigate rare processes, especially Dark Matter interactions (model independent)
- DAMA results show a modulation of 14 annual cycles (DAMA/NaI + DAMA/LIBRA)
- The observed modulation cannot be explained by any known background

The observed modulation signature is assigned to dark matter particle interactions in NaI(TI) crystals

DAMA annual modulation signature

Combined with 7 annual cycles of DAMA/Nal there is an evidence of dark matter particles in the galactic halo at 9.3 σ C.L.

Corollary investigations of the nature of dark matter particles needed with **model dependent** analyses

How to compare DAMA with model dependent analyses?

Exclusion limits are reported based on various assumptions

- 'standard' dark matter halo
- interaction of dark matter particles via elastic off scattering nuclei in target material
- A² dependence of DM-nucleus cross section
- often constant quenching factors are assumed

How to compare DAMA with model dependent analyses?

How to compare DAMA with model dependent analyses?

- Uncertanties concerning dark matter interactions
 - velocity distribution
 - density profile of dark matter particles
 - scaling factor of cross section
 - quenching factors, especially energy dependence
 - crystal effects (e.g. channeling)
 - interaction type (only nuclear recoils)

Nal: An alternative CRESST detector material?

- Two different target nuclei for light and heavy dark matter candidates (A_{Na}=23 and A_I=127)
- High purity material available
- Well known scintillator at room temperature with high light output

but: sufficient light output at mK temperatures is necessary for application in CRESST like detector modules

Temperature dependent light output of Nal and Nal(TI)

Measured with a coincidence technique

Temperature of target crystal can be varied down to ~1.7 K, while PMTs are operated at room temperature.

Example pulse of Nal scintillation event

NaI pure				
T	290 K	156 K	6 K	
$ au_1$	98 ns	112 ns	149 ns	
τ_2	_	644 ns	_	
NaI(Tl)				
T	300 K	150 K	6 K	
$ au_1$	_	_	23 ns	
τ_2	216 ns	646 ns	122 ns	

Relative light output of Nal and Nal(TI)

Sailer et al. Eur. Phys. J. C (2012)

Nal as alternative CRESST target

- Down to 1.7K the light output of NaI is sufficient for application as a CRESST modules
- Phonon properties not investigated yet
- Precise determination of quenching factors of Na and I
- New design will be needed for CRESST modules with Nal as target material due to surface properties of the crystal (hygroscopic)

Conclusion and Outlook

- CRESST experiment is able to use a large variety of scintillating materials for direct detection of WIMPs via off scattering target nuclei
- Nal as interesting alternative target material
- Measurements of relative light output of pure NaI and NaI(TI)

- Investigation of phonon properties of pure NaI and NaI(TI) at low temperatures
- Determination of quenching factors of Na and I
- CRESST like module design for Nal crystals

Conclusion and Outlook

- CRESST experiment is able to use a large variety of scintillating materials for direct detection of WIMPs via off scattering target nuclei
- Nal as interesting alternative target material
- Measurements of relative light output of pure NaI and NaI(TI)

- Investigation of phonon properties of pure NaI and NaI(TI) at low temperatures
- Determination of quenching factors of Na and I
- CRESST like module design for Nal crystals

Backup – Histogram of integral values

Backup – Decay times derived by double exponential fit

NaI pure				
T	290 K	156 K	6 K	
$ au_1$	98 ns	112 ns	149 ns	
$ au_2$	-	644 ns	_	
NaI(Tl)				
T	300 K	150 K	6 K	
$ au_1$	_	_	23 ns	
$ au_2$	216 ns	646 ns	122 ns	

Fit results for the sum of single hit events at three different temperatures

Backup – Decay behavior of Nal(TI)

