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Self-trapping of charge carriers in inorganic solids and its influence on
energy transfer processes.

Self-trapped electrons and holes in molybdates. Manifestation in TSL
curves and TSL spectra.

Unusually high trapping efficiency in ZnMoO,, co-existence of self-
trapped electrons and holes.

Influence of self-trapping on the luminescent and scintillation properties
of the molybdates.
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= Trapping of electrons and holes is possible even in the ideal crystals
without any impurity (self-trapping).

= Self-trapping of electrons and holes is possible due to their interaction
with the crystals lattice. In some cases it results in the polarization of the
local region of the crystal lattice, which immobilize the charge carrier.

= The well-known example of the self-trapped charge carrier is V, center.

= Self-trapped electrons (STEL) and holes
(STH) are stable at low temperatures and
should influence the energy transfer
processes in the cryogenic scintillating
bolometers.

I

Fig. 13.12 A schematic of a Vi center in KCI.




‘:_»

TEEEREERR

Self-trapping of char

= Influence of STH on the energy transfer processes. STH creation prevent
the energy transfer to In impurity at low temperatures in Csl:In.

V, disintegration
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In molybdates:

= charge carriers are self-trapped at the MoO, complex, which is the emission center.
= Pb 6s states prevents self-trapping of the holes in PbMoO,.
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CaMoOy SrMoOy PbMoOy ZnMoOy
Space group C4n®(141/a), tetragonal P-1, triclinic
Photo of the bulk No photo
crystal EW
Contaminating Ba (100 ppm), S1 (70 ppm), W (300 ppm), W (200 ppm),
impurities Sr (60 ppm), Ca (20 ppm), Ca (40 ppm), Si (40 ppm),
Na (30 ppm), Cl(15 ppm), S (10 ppm), Cd (4 ppm)
Ag (10 ppm), W (10 ppm), Bi (4 ppm).
W (10 ppm) Ba (10 ppm) K (4 ppm)
Intrinsic trap Hole center Hole center Electron center ?
centers O O Mo Oy~
Release 150 200 140 [P35 b 89 (1979) 373] ?
[ZPhysik(B) 35 (1979) 1] | [LLumin 22(1981)419] | 40 [J Lumin 33(1985)313]

temperature, K
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STH in CaMoC
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STH in SrMoC
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Low gradient Czochralski method
NIIC SRAS (Novosibirsk) 2011

12000 —
10000 ~

Conventional Czochralski method

GPI RAS (Moscow) ISMA (Kharkov) }

| ZnMoO, Moscow, X-ray, 10 min

a.u.

Intensity.

TEEEREERR

time, s

‘ ‘ 140
|
 1=097 120
100
80
60
/11
/ 20
™
500 1000 1500 2000

M ‘ainresadwa]
a.u.

Intensity

4000
3500 —
3000 —
2500 —

2000

[u
a
o
o

1000 —

500 —

500

Intensity, a.u.

14000

ZnMoO, Novo, X-ray, 10 min |

8000

6000 —

4000

b

—1=1.55

2000

o

| ZnMoO, Kh, X-ray, 10 min |

1

1000
time, s

40

20

0

2000

M ‘alnelsadwa]

140

120

100

80

M ‘alnesadwa]

I

{ Improvement of optical quality of ZnMoO, crystal increases concentration of traps?
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EPR intensity (arb. units)
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The center #1 is of hole-type,

created as a result of a hole
trapping at lattice oxygen ion.
The center #2 is of electron —

type, and is created by trapping of

an electron by (MoO,)? complex.

« Two paramagnetic centers are created
under X-ray irradiation at T = 30 K.
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Thermal stability of
- centers in ZnMoOy
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Scintillation propert
self - trapping

- . 0 . 3
emission of STE under direct excitation Eg eV Emission peak, nm | Light yield, ph/MeV
(T~10K)
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Conclusio

Intrinsic trapping centers for electrons and holes co-exist in ZnMoO,. The
immobility of charge carriers at T < 50 K results in the substantial decrease of the
probability of STE creation with consequent worsening of the luminescent
properties at low temperatures and in the unusually low scintillation light yield of
ZnMoO,.
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Luminescence proper
scintillation yie
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The suppression remains at the same level for excitation with alpha particles.
VUV spectroscopy allows to make conclusions about the scintillation yield (in some

cases).

= data on scintillation light yield of PbMoO, were obtained in [Danevich et al NIM. A 622 (2010) 608]

= data on scintillation light yield of CaMoO, were obtained in [Mikhailik et al PSS (b) 247 (2010) 1583]
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[ data on scintillation light yield of PboMoO, were obtained in [Danevich et al NIM. A 622 (2010) 608]
. data on scintillation light yield of CaMoO, were obtained in [Mikhailik et al PSS (b) 247 (2010) 1583]

CaMoOy SrMoOy PbMoOy ZnMoOy
Space group C4p%(144/a), tetragonal P-1, triclinic
Intrinsic trap O O MoO4*- MoQO4* O
centers
Release 150 200 40 76 97
temperature, k




