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 Self-trapping of charge carriers in inorganic solids and its influence on 

energy transfer processes. 

 

 Self-trapped electrons and holes in molybdates. Manifestation  in TSL 

curves and TSL spectra. 

 

 Unusually high trapping efficiency in ZnMoO4, co-existence of self-

trapped electrons and holes.  

 

 Influence of self-trapping on the luminescent and scintillation properties 

of the molybdates.  

Outline 



 Trapping of electrons and holes is possible even in the ideal crystals 

without any impurity (self-trapping). 

 

 Self-trapping of electrons and holes is possible due to their interaction 

with the crystals lattice. In some cases it results in the polarization of the 

local region of the crystal lattice, which immobilize the charge carrier.   

 

 The well-known example of the self-trapped charge carrier is Vk center. 

 

 Self-trapped electrons (STEL) and holes 

      (STH) are stable at low temperatures and  

      should influence the energy transfer  

      processes in the cryogenic scintillating  

      bolometers. 

Self-trapping of charge carriers 

Cl2
- 



 Influence of STH on the energy transfer processes. STH creation prevent 

the energy transfer to In impurity at low temperatures in CsI:In. 

Self-trapping of charge carriers 

Gridin et al, Channels of Energy Losses and Relaxation in CsI:М Scintillators (М=Tl, In), IEEE TNS, accepted for publication 
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Self-trapping of charge carriers 

In molybdates:  

 charge carriers are self-trapped at the MoO4 complex, which is the emission center. 

 Pb 6s states prevents self-trapping of the holes in PbMoO4. 

Compound Type of self-

trapped carrier 

Type of center Disintegration 

temperature, K 

CsCl STH Cl2
- (Vk) 195 

BaF2 STH F2
- (Vk) 115 

PbWO4 STEL (WO4)
3- 40 

CaWO4 STH O- 150 

Y2SiO5 STH O- 180 

PbCl2 STEL 

STH 

Pb2
3+ 

Cl2
- 

125 

51 

SiO2 No self-trapping 

CaMoO4 STH O- 150 

SrMoO4 STH O- 200 

CdMoO4 STH O- 69 

PbMoO4 STEL (MoO4)
3- 140 (?) 

40 (?) 

ZnMoO4 ? ? ? 



Objects of the study 



STH in CaMoO4 

Compou

nd 

Type of self-

trapped carrier 

Type of 

center 

Disintegration 

temperature, 

K 

CaMoO4 STH O- 150 

SrMoO4 STH O- 200 

PbMoO4 STEL (MoO4)3
- 140 

40 

ZnMoO4 ? ? ? 

Scheme of the processes, which are 

responsible for the TSL peaks at 20 and 52 K: 

Scheme of the processes, which are 

responsible for the TSL peak at 150 K: 0 50 100 150 200 250 300
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STH in SrMoO4 

Compou

nd 

Type of self-

trapped carrier 

Type of 

center 

Disintegration 

temperature, 

K 

CaMoO4 STH O- 150 

SrMoO4 STH O- 200 

PbMoO4 STEL (MoO4)3
- 140 

40 

ZnMoO4 ? ? ? 

Scheme of the processes, which are 

responsible for the TSL peaks below 200 K: 

Scheme of the processes, which are 

responsible for the TSL peaks above 200 K: 0 50 100 150 200 250 300
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STEL in PbMoO4 

Compoun

d 

Type of self-

trapped 

carrier 

Type of 

center 

Disintegration 

temperature, 

K 

CaMoO4 STH O- 150 

SrMoO4 STH O- 200 

PbMoO4 STEL (MoO4)3
- 140 

40 

ZnMoO4 ? ? ? 

Scheme of the processes, which are 

responsible for the TSL peaks above 70 K: 

Scheme of the processes, which are 

responsible for the TSL peaks below 70 K: 

0 50 100 150 200 250 300

1

10

100

1000

400 500 600 700
0.0

0.5

1.0

 

 

 Temperature, K

a

110K

85K
19K

43K

In
te

n
s
it
y
, 

a
.u

.

T > 70 K
T < 70 K

In
te

n
s
it
y
, 
a
.u

.

Wavelength, nm

MoO4 complex 

MoO3 complex 



Efficiency of trap centers 

Integrated intensity of TSL relatively to 

the integrated intensity of emission 

under X-ray excitation: 

CaMoO4 – 5% SrMoO4 – 3% 

PbMoO4 – 20% ZnMoO4 – 150% 
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Improvement of optical quality of ZnMoO4 crystal increases concentration of traps? 

Efficiency of trap centers 
in ZnMoO4 
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EPR data on ZnMoO4 

• Two paramagnetic centers are created 

under X-ray irradiation at T = 30 K. 

2000 2250 2500 2750 3000 3250 3500 3750 4000

After x-ray irrad.
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• The center #1 is of hole-type, 

created as a result of a hole 

trapping at lattice oxygen ion.  

• The center #2 is of electron – 

type, and is created by trapping of 

an electron by (MoO4)
2- complex. 

g = 2.033-2.043 
g = 1.858-1.927 



Thermal stability of paramagnetic 
centers in ZnMoO4  

• Both types of charge carriers 

are immobile at the low 

temperatures.  

 

• It may be the main reason for 

low scintillation yield of 

ZnMoO4 at low temperatures. 
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Scintillation properties and  
self-trapping 

Energy losses occurs at the stage of migration of 

charge carriers to the emission centers. 

 

 S(CaMoO4) > S(ZnMoO4) 

 

Self-trapping prevents migration of both – 

electrons and holes in ZnMoO4. 

Q (CaMoO4) ~ Q(ZnMoO4) 

Eg (CaMoO4) ~ Eg (ZnMoO4) 
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Intrinsic trapping centers for electrons and holes co-exist in ZnMoO4. The 

immobility of charge carriers at T < 50 K results in the substantial decrease of the 

probability of STE creation with consequent worsening of the luminescent 

properties at low temperatures and in the unusually low scintillation light yield of 

ZnMoO4.  
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Scintillation properties and  
self-trapping. PbMoO4 
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 = 3.5 eV • When excitation energy corresponds to the 

direct creation of exciton, the temperature 

dependence of luminescence is determined  

by the intra-center quenching.  
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• When excitation energy exceeds the 

bandgap value separated charge 

carriers may be intercepted by 

another relaxation channels.  



Luminescence properties and  
scintillation yield 
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data on scintillation light yield of PbMoO4 were obtained in [Danevich et al NIM. A 622 (2010) 608] 

data on scintillation light yield of CaMoO4 were obtained in [Mikhailik et al PSS (b) 247 (2010) 1583] 

• The suppression remains at the same level for excitation with alpha particles. 

• VUV spectroscopy allows to make conclusions about the scintillation yield (in some 

cases). 



Scintillation yield 
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data on scintillation light yield of PbMoO4 were obtained in [Danevich et al NIM. A 622 (2010) 608] 

data on scintillation light yield of CaMoO4 were obtained in [Mikhailik et al PSS (b) 247 (2010) 1583] 


