

Response of parylene-coated NaI(Tl) scintillators at low temperature

M. Martínez, Fundacion ARAID, Univ. de Zaragoza – RPScint2013, 17 – 20 September 2013, Kyiv, Ukraine

Outline

- 1. NaI & NaI(Tl) scintillators revised
- 2. Parylene coating
- 3. Low temperature X-ray scintillation measurements
	- Light output vs T
	- Spectral response
- 4. Thermoluminescence
- 5. Response after thermal cycles
- 6. Summary

"Study of parylene-coated NaI(Tl) at low temperatures for bolometric applications", N. Coron et al., Astrop. Phys. 47 (2013) 31

C. Cuesta, E. García, C. Ginestra, M. Martínez, Y. Ortigoza, A. Ortiz de Solórzano, C. Pobes, J. Puimedón, M.L. Sarsa, J.A. Villar

N. Coron, P. de Marcillac, T. Redon, L. Torres

NaI & NaI(Tl) scintillators

- Well known at room and low temperature
	- NaI(Tl): 420 nm
	- NaI pure: 300 nm, better than NaI(Tl) at cold
	- Both increase light when lowering T . Maximum around 60 K (NaI) , 150-250 K (NaI(Tl)), then strong decrease
- Never tested at very low (mK) temperature

"Alkali Halide Scintillators" W.J. Van Sciver, IRE Trans. Nucl. Sci. 3 (1956) 39.

Fig. 3—Energy conversion efficiency, $\eta,$ of unactivated NaI as function of temperature.

"Fundamental Studies of Scintillation Phenomena in NaI" W.J. Van Sciver and L. Bogart, IRE Trans. Nucl. Sci. 5 (1958) 90

Fig. 4 Light yield of NaI(Tl) as function of temperature relative to the value at room temperature. Errors are dominated by systematics, see text for details

"Low temperature light yield measurements in NaI and NaI(Tl)" C. Sailer et al., Eur. Phys. J. C. 72 (2012) 2061

NaI/NaI(Tl) scintillators: pros and cons

Pros

- \odot Low cost and well-known technology (most widely used scintillator)
- \circledcirc High light yield
- \odot NaI(TI): $\lambda_{max} \approx 420$ nm, maximum efficiency region of bialkali PMTs
- Very radiopure crystals achievable by powder selection/purification
- \odot Possibility to grow large mass crystals
- \odot Particle discrimination by pulse shape analysis at high energy
- For Dark Matter applications:
	- 100% sensitive to SD-proton interaction
	- Sensitive to Light and heavy WIMPS
	- Target of DAMA/LIBRA

Cons

- **High hygroscopicity**
- \odot For Dark Matter applications:
	- Low quenching factor NR/βϒ (Na ≈ 0.3, $1 \approx 0.1$)
	- No particle discrimination at low energy
- \odot For bolometric applications:
	- Relatively high specific heat $(\theta_{debye} = 164 \text{ K})$
	- Large coefficient of thermal expansion (1% between 300 K and 4 K)

Universidad Zaragoza

M. Martínez, Fundacion ARAID, Univ. de Zaragoza – RPScint2013, 17 – 20 September 2013, Kyiv, Ukraine

For low T applications

NaI coating

The higroscopicity complicates the crystal handling, specially for low T applications

One solution could be to **coat the NaI crystal with an appropriate material acting as humidity barrier**

Look for coating materials:

- Transparent in the wavelength of NaI/NaI(Tl) emission
- Radiopure
- Resistant to thermal cycles
- Low heat capacity (\rightarrow very thin films!)
	- …

A possibility: PARYLENE

Parylene

Polymer family based on poly-p-xylylene, commonly used in electronic and space industries as moisture/dielectric barrier

6

Parylene conformal coating

Parylene is deposited in very thin films by vapor-phase condensation polymerization

CONFORMAL COATING

Monomers are adsorbed and simultaneously polymerizing on all the exposed surfaces.

- Thin layers (down to $0.1 \mu m$)
- Pinhole-free
- Room temperature (avoiding thermal stresses on the sample)
- No solvents

Parylene heat capacity

Laboratorio Subterráneo de Canfranc

Parylene radiopurity

HPGe measurement at LSC on dimer (dichloro-p-cylophane) samples

(From the measurements we cannot rule out the presence of out-of-equilibrium ²¹⁰Pb)

But cleaner parylene films are available

see for example: Loach, "Electronics and Cables for the MAJORANA demonstrator" , Talk at the 2010 Topical Workshop in Low Radioactivity Techniques (LRT2010)

 \rightarrow less than 0.2 mBq/kg²³²Th

Parylene transmission in NaI/NaI(Tl) emission bands

Universidad Zaragoza

Sepctra from "Alkali Halide Scintillators" W.J. Van Sciver, IRE Trans. Nucl. Sci. 3 (1956) 39.

Parylene-coated NaI/NaI(Tl) samples

NaI(Tl) crystals provided by **Detect-Europe** NaI crystals provided by **Hilger**

- cylindrical shape, $H=\phi=25$ mm
- 45 g weight
- optically polished surfaces

Low temperature X-ray scintillation measurements

X-ray source

Light output as a function of temperature

- Detector: **Si photodiode** HAMAMATSU S1336-18BQ (detection range**: 190–1100 nm**)
- Fast cooling from 300 to 77 K (\sim 20 min) and from 77 K to 4 K(\sim 6 min)
- Measurement during two warming cycles (from 4 to 200 K and from 1.5 to 77 K):

Light output as a function of temperature

Universidad Zaragoza

16

Spectral response: Cavity correction

Ag internally-coated cavity

Cavity transmission efficiency depends on wavelength

Cavity correction. MC simulation

Cavity correction. Comparison with calculus

Spectral response at several temperatures

40% systematic error below 350 nm due to detector & cavity corrections

320 nm line dominates the emission at very low temperature

Double peak @ 440 nm and 460 nm

Spectral response at several temperatures

Universidad

Zaragoza

噩

Thermoluminescence

Thermoluminescence

- A thermoluminescence peak at around 95 K and two smaller ones at 60 and 150 K.
- Spectral response (taken at regular intervals between 84 and 95 K) shows a single emission band centered at 450 nm.

Response after thermal cycles

Light output measurement **before** and **after** the thermal cycle

- Light detector: **PMT HAMAMATSU R6233**-100SEL , spectral response: 300- 650 nm
- Excitation: Y 662 keV (137 Cs)

Zaragoza

PMT pulses are digitized with

Parylene resistance to thermal cycles

Light output measurement before the thermal cycle

Parylene-coated NaI(Tl)

Parylene resistance to ambient moisture

2-5 um parylene allow handling under normal RH conditions at several-days scale, but it is not a permanent coating against ambient moisture

After one month at RH 30-50% parylene coating was found to be ineffective, with large areas of the surface white and almost opaque, and a reduction in light output of around 65%

Summary

- \Box NaI/NaI(TI) hygroscopicity limits their application for many purposes, especially at low temperature. To avoid this problem we study parylene-coated NaI and NaI(Tl) crystals.
- \Box The response of a parylene-coated NaI(TI) under X-ray excitation have been studied from 1.5 to 300 K:
	- Maximum of emission is found to be at around 125 K
	- ₋ Notable decrease in light output below 70 K
	- Further increment of light below 30 K (light output ω 1.5 K= 90% light ω 300 K)
	- ₋ At 1.5 K the wavelength of maximum emission of NaI(Tl) is observed at 320 nm
- \Box A thermoluminescence peak has been found at around 95 K, with a single emission band centered at 450 nm. Two smaller thermoluminescence peaks have also been observed at 60 K and 150 K
- \Box We have studied the mechanical resistance of the coating under thermal cycles, observing a degradation of the optical appearance and the light output after cooling down to about 100 mK, which compromises the reusability of the samples.