Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Available online at www.sciencedirect.com

Nuclear Physics A 824 (2009) 101-114

www.elsevier.com/locate/nuclphysa

First limits on neutrinoless resonant 2ε captures in ¹³⁶Ce and new limits for other 2β processes in ¹³⁶Ce and ¹³⁸Ce isotopes

P. Belli^a, R. Bernabei^{a,*}, S. d'Angelo^a, F. Cappella^b, R. Cerulli^c, A. Incicchitti^b, M. Laubenstein^c, D. Prosperi^b, V.I. Tretyak^d

^a Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Sezione di Roma "Tor Vergata", I-00133, Roma, Italy

^b Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN, Sezione di Roma, I-00185, Roma, Italy ^c INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi (Aq), Italy ^d Institute for Nuclear Research, MSP 03680 Kiev, Ukraine

Received 4 February 2009; received in revised form 7 March 2009; accepted 12 March 2009

Available online 5 April 2009

Abstract

A small CeCl₃ crystal (6.9 g) was measured deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of the INFN (Italy) with a low background HP Ge detector (244 cm³) during 1280 h. The crystal is not polluted by ²³²Th, ⁴⁰K, ⁶⁰Co, ¹³⁷Cs (limits were set on the activity at a level of 0.05–1 Bq/kg), but contains radioactive ¹³⁸La (0.68 Bq/kg) and, probably, is polluted by ²³⁵U and ²³⁸U (0.3–0.7 Bq/kg). The half life limits for different double β processes in ¹³⁶Ce and in ¹³⁸Ce were set in the range of (1–6) × 10¹⁵ yr. In particular, the 2 ε captures in ¹³⁶Ce to various excited levels of ¹³⁶Ba were considered for the first time. The limits for the resonant neutrinoless transitions to the 2392.1 keV and 2399.9 keV levels of ¹³⁶Ba are: $T_{1/2} > 2.4 \times 10^{15}$ yr and $T_{1/2} > 4.1 \times 10^{15}$ yr at 90% C.L., respectively. © 2009 Elsevier B.V. All rights reserved.

PACS: 23.40.-s; 29.40.Mc

Keywords: RADIOACTIVITY ^{136,138}Ce($2\beta^+$), (2EC); measured E_{γ} , I_{γ} ; deduced $T_{1/2}$ lower limits. CeCl₃ scintillator

* Corresponding author.

E-mail address: rita.bernabei@roma2.infn.it (R. Bernabei).

0375-9474/\$ – see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.nuclphysa.2009.03.012

P. Belli et al. / Nuclear Physics A 824 (2009) 101-114

1. Introduction

In recent years scintillating materials, which contain Ce, have attracted much attention in the searches for new fast scintillators with high density, large light yield, perfect linearity and good energy resolution for the use in fundamental and applied nuclear and particle physics, and in numerous applications in medicine and industry. This is related with the fact that the Ce^{3+} ions yield fast (10–100 ns) scintillation in the wavelength range of 300–500 nm due to electric dipole allowed 5d–4f transitions in the atomic shell [1,2]. Many Ce doped scintillating crystals (generally of modest size) were investigated; among them, we can mention:

- LaCl₃(Ce) with decay time of $\tau = 24$ ns for main decay component and light yield LY = 50000 photons/MeV (to be compared with classical NaI(Tl) scintillator with $\tau = 230$ ns and LY = 48000 photons/MeV, or CsI(Tl) with $\tau = 800$ ns and LY = 66000 photons/MeV) [2];
- LaBr₃(Ce) with $\tau = 16$ ns and LY = 70000 photons/MeV [2]; excellent energy resolution (FWHM) of 2.6% at 662 keV energy of ¹³⁷Cs was measured in comparison with typical 6.7% for NaI(Tl) [3];
- LuI₃(Ce) with $\tau = 24$ ns and LY = 95000 photons/MeV [2];
- Lu₂SiO₅(Ce) with $\tau = 42$ ns and LY = 30000 photons/MeV [2];
- GdI₃(Ce) with $\tau = 39$ ns and LY = 58000 photons/MeV [4];
- PrBr₃(Ce) with $\tau < 10$ ns and LY = 21000 photons/MeV [5].

Scintillating crystals where Ce is not a dopant but a main constituent were also studied. Measurements of CeBr₃ gave $\tau = 17$ ns and LY = 88000 photons/MeV [6]. CeF₃ scintillator ($\tau = 5$ ns and $\tau = 31$ ns for two main components; LY = 4000 photons/MeV [1]) was intensively investigated in many works, in particular, by the Crystal Clear Collaboration (see also e.g. [7] and references therein).

CeCl₃ is another perspective scintillator which contains Ce as a main constituent. However, experimental information on its scintillation features is rather scarce. The density of CeCl₃ is 3.9 g/cm^3 . The melting point is $817 \,^{\circ}$ C. It is highly hygroscopic. The thermal and magnetic properties were studied in [8]. The electronic and optical properties were examined in [9,10]; in the latter work a refraction index near 2.2 was calculated at 360 nm (experimental value is unknown). To our knowledge, scintillation characteristics were measured only in one work [11] (see also [12]) where few components of scintillation signal were measured with decaying times 4.4 ns (6.6%), 23.2 ns (69.6%), 70 ns (7.5%), and > 10 µs (16.3%); total light output was 28 000 photons/MeV (i.e. much higher than that of much more intensively investigated CeF₃). Maximal emission wavelength is 360 nm.

Intrinsic radioactivity is one of the important characteristics of scintillators. While it is possible to decrease contributions from nuclides of the natural U/Th chains, of ⁴⁰K, of ⁶⁰Co, of ¹³⁷Cs and of other "usual" radioactive contaminants by the purification of all the materials and environmental conditions used for the crystal growth, some other contributions are unavoidable if they are related with natural radioactive isotopes of one of the elements which constitutes the crystal.

For example, La containing crystals include unstable ¹³⁸La (β^- decay with 33.6% and EC with 66.4%); its half life $T_{1/2} = 1.05 \times 10^{11}$ yr [13] and natural abundance $\delta = 0.09\%$ [14] result in activity of A = 0.82 Bq per 1 g of ^{nat}La. Internal radioactivity of LaCl₃ scintillators was investigated e.g. in [15,16].

Alpha emitting ¹⁴⁴Nd ($T_{1/2} = 2.29 \times 10^{15}$ yr) is present with natural abundance $\delta = 23.8\%$; the corresponding activity is A = 9.5 mBq per 1 g of ^{nat}Nd.

Natural Sm contains two α radioactive isotopes: ¹⁴⁷Sm ($T_{1/2} = 1.06 \times 10^{11}$ yr, $\delta = 14.99\%$, A = 124.4 Bq/g) and ¹⁴⁸Sm ($T_{1/2} = 7 \times 10^{15}$ yr, $\delta = 11.24\%$, A = 1.4 mBq/g). Alpha unstable ¹⁵²Gd ($T_{1/2} = 1.08 \times 10^{14}$ yr) is present in natural Gd with $\delta = 0.2\%$; the

Alpha unstable ¹⁵²Gd ($T_{1/2} = 1.08 \times 10^{14}$ yr) is present in natural Gd with $\delta = 0.2\%$; the corresponding activity is A = 1.6 mBq per 1 g of ^{nat}Gd. Such a value seems rather small; nevertheless it gave the most prominent peak observed in measurements with a Gd₂SiO₅ scintillator [17].

Presence of β^- radioactive ¹⁷⁶Lu ($T_{1/2} = 3.78 \times 10^{10}$ yr) in natural Lu ($\delta = 2.59\%$) gives an activity of A = 51.8 Bq per 1 g of ^{nat}Lu. Internal radioactivity of Lu₃Al₅O₁₂ scintillators was measured in [18].

Natural Eu consists of only 2 stable isotopes: ¹⁵¹Eu and ¹⁵³Eu. However, both of them have quite big cross sections for thermal neutron capture (5900 b and 312 b, respectively). Capture of neutron will result in radioactive ¹⁵²Eu ($T_{1/2} = 13.537$ yr) and ¹⁵⁴Eu ($T_{1/2} = 8.593$ yr); their activities depend on the history of the materials used for the production of a crystal. This radioactivity is unavoidable for any scintillator which contains Eu as a main constituent or as a dopant; for Li₆Eu(BO₃)₃ crystals, contamination by ¹⁵²Eu and ¹⁵⁴Eu was studied in [19] and for CaF₂(Eu) in [20].

In addition it should be noted that, because of the similarity in the chemical properties, all the above mentioned radioactive isotopes could be present – at some level – in any lanthanide based scintillator.

The measurements of the Ce containing samples permit a search for double beta (2β) decays of Ce isotopes. The two neutrino (2ν) double beta decay is a process of transformation of atomic nucleus with simultaneous emission of two electrons and of two antineutrinos $(A, Z) \rightarrow (A, Z + 2) + 2\beta^- + 2\tilde{\nu}_e$ (or similar processes with emission of two positrons $2\beta^+$, or electron capture with simultaneous emission of positron $\varepsilon\beta^+$, or double electron capture 2ε) [21]. This process is allowed in the Standard Model (SM), but being of the second order in the perturbation theory, it is characterised by extremely low probability: to-date it is the rarest decay observed in direct laboratory experiments. It has been detected for only 10 nuclides; the corresponding half lives are in the range of $10^{18}-10^{21}$ yr [22,23]. In contrast, neutrinoless (0ν) double beta decay is forbidden in the SM because it violates lepton number by two units. However, it is predicted in many SM extensions. Its existence can lead to the extremely important conclusion that the neutrino is a Majorana particle $(\nu = \tilde{\nu})$ and permits the measurement of the absolute scale of the neutrino masses).

Three Ce isotopes are candidates for 2β decay: ¹³⁶Ce with natural abundance $\delta = 0.185\%$ [14] and an energy release Q = 2419(13) keV [24]; ¹³⁸Ce with $\delta = 0.251\%$ and Q = 693(10) keV; and ¹⁴²Ce with $\delta = 11.114\%$ and Q = 1416.7(2.1) keV. ¹³⁶Ce isotope is the most interesting one because the high energy release allows its $2\beta^+$ decay, which is energetically possible only for 6 nuclei-candidates [22]. As well, some resonant neutrinoless 2ε captures in ¹³⁶Ce to excited states of ¹³⁶Ba are energetically possible (see e.g. [25]). Up to now, 2β decays of Ce isotopes to the ground states of daughter nuclides were searched for only in 3 experiments [7,17,26]. The processes were not detected and only limits on half lives were set; for ¹³⁶Ce and ¹³⁸Ce, of interest in this work, they are in the range of 10^{15} – 10^{17} yr.

In this paper we report results on the internal impurities of a CeCl₃ sample – to our knowledge, for the first time – based on the measurements of a CeCl₃ crystal with HP Ge detector. The measurements also allow the improvement of some limits on 2β processes in ¹³⁶Ce and ¹³⁸Ce

and, in particular, to set the first $T_{1/2}$ limits for the decays of ¹³⁶Ce to excited states of ¹³⁶Ba (including those with possible resonant enhancement).

2. Measurements and results on internal contamination of CeCl₃

The used CeCl₃ crystal has dimensions of $\oslash 13 \times 13$ mm and a mass of 6.9 g. Because of its hygroscopy, it was housed in combined plastic and copper container with external dimensions $\oslash 16 \times 20$ mm; total mass of the sample was 13.8 g. Radioactive contamination of the sample was measured with a HP Ge detector (244 cm³ volume) in the low-background set-up located deep underground (3600 m w.e.) in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN (Italy). To reduce external background, the detector was shielded by layers of low-radioactive copper ($\simeq 10$ cm), lead ($\simeq 20$ cm) and polyethylene ($\simeq 10$ cm). The set-up has been continuously flushed by high purity nitrogen (stored deep underground for a long time) to avoid presence of residual environmental radon. Energy resolution (FWHM) of the HP Ge detector was 2 keV at 1332 keV γ line of ⁶⁰Co; it depends on energy, and for all cases considered in the following it was calculated using the FWHM values of nearby peaks. The CeCl₃ sample was measured during 1279.9 h; the background of the HP Ge detector was measured over 3047.7 h. Part of the experimental spectrum in the energy region 750–1500 keV together with the background for comparison is shown in Fig. 1.

The peaks found in the spectrum of the CeCl₃ crystal belong to: (1) standard contaminants: 40 K, 60 Co, 137 Cs and nuclides in chains of 232 Th, 235 U, 238 U; (2) non-standard but expected: 138 La.

The specific activities of the nuclides were calculated with the formula: $A = (S_s/t_s - S_b/t_b)/(y \cdot \eta \cdot m)$, where S_s (S_b) is the area of a peak in the sample (background) spectrum; t_s (t_b) is the time of the sample (background) measurement; y is the yield of the corresponding γ line [13]; η is the efficiency of the full peak detection; m is the mass of the sample. The registration efficiencies were calculated with the EGS4 package [27]. The values of the limits were obtained with the Feldman–Cousins procedure [28].

The comparison of the rates of the peaks of ⁴⁰K, ⁶⁰Co, ¹³⁷Cs and ²³²Th in the CeCl₃ spectrum with those in the background gives no evidence for pollution of the CeCl₃ crystal by these nuclides: intensities of the peaks were equal to intensities of the peaks in the background spectrum within statistical uncertainties. For example, for line 1173.2 keV of ⁶⁰Co, (101 ± 19) counts were observed in the CeCl₃ spectrum, and (280 ± 33) counts in the background; the rates are (1.89 ± 0.36) counts/day and (2.21 ± 0.26) counts/day, respectively. Taking into account the γ yield $\gamma = 99.97\%$ [13] and the efficiency $\eta = 1.9 \times 10^{-2}$, this gives activity of (-27 ± 38) mBq/kg, or limit < 38 mBq/kg at 90% C.L. with the Feldman–Cousins procedure [28]. Analysis of the second line of ⁶⁰Co at 1332.5 keV gives a very close result (< 39 mBq/kg at 90% C.L.).

For the ²³⁵U and ²³⁸U chains, additional pollution is observed. Taking into account the strong interference between the most intensive line in ²³⁵U chain at 185.7 keV (²³⁵U, y = 57.20%) with the line at 186.2 keV in ²³⁸U chain (²²⁶Ra, y = 3.59%), and the line of 351.1 keV (²¹¹Bi in ²³⁵U chain, y = 12.91%) with the line 351.9 keV (²¹⁴Pb in ²³⁸U chain, y = 37.60%), we estimated the ²³⁸U activity using strong peaks of ²¹⁴Pb (242.0, 295.2 keV) and ²¹⁴Bi (609.3, 1120.3, 1238.1, 1764.5, 2204.2 keV) as (700 ± 70) mBq/kg. The activity of ²³⁵U was calculated – considering the peaks at 236.0 keV (²²⁷Th), at 269.5 keV (²²³Ra) and at 271.2 keV (²¹⁹Rn) to be: (360 ± 190) mBq/kg. The activities, derived in this way, give also correct results for the total area of the observed 186 and 352 keV peaks in the assumption of equilibrium in the ²³⁵U

Fig. 1. (Color online.) Spectra measured underground in the LNGS with the low-background HP Ge detector (244 cm³): (a) CeCl₃ sample during 1279.9 h; (b) background of the HP Ge detector during 3047.7 h (normalized here to 1279.9 h). Peaks of 789 keV (¹³⁸La β^- decay) and 1436 keV (¹³⁸La electron capture) are evident in the CeCl₃ spectrum. The arrow (red online) corresponds to energy of the first excited level of ¹³⁶Ba (819 keV) which could be populated in 2 ε and $\varepsilon\beta^+$ decay of ¹³⁶Ce.

and ²³⁸U chains. For example, the contribution to the peak at 186 keV is equal to 37 counts from ²²⁶Ra and 305 counts from ²³⁵U; the sum of 342 counts is in perfect agreement with the total observed 346 counts.

As regards the pollution of the CeCl₃ crystal by elements from the lanthanide series, the presence of the radioactive ¹³⁸La is evident: see Fig. 1 where two prominent peaks are present at 788.7 keV (β^- decay of ¹³⁸La, 33.6%) and at 1435.8 keV (EC of ¹³⁸La, 66.4%). The corresponding activity of ¹³⁸La is equal to (680 ± 50) mBq/kg. The presence of other radioactive lanthanides which decay with emission of γ quanta and, thus, could be registered in the measurements with HP Ge detector, was not seen, and only limits for their activities were calculated using the most intensive expected lines: < 50 mBq/kg for ¹⁷⁶Lu (lines at 201.8 and 306.8 keV); < 130 mBq/kg for ¹⁵²Eu (lines at 344.3 and 1408.0 keV); < 60 mBq/kg for ¹⁵⁴Eu (1274.4 keV line). The summary of the results is given in Table 1. It should be noted that, because of the chemical similarity of the elements in the lanthanide series, it is quite natural to suppose the presence of ¹³⁸La in the CeCl₃ crystal itself; however, some La contamination might have also been arisen during the CeCl₃ crystal manufacturing. In addition, some radioactive ¹³⁸La could also be created as result of cosmogenic activation of Ce on the Earth surface. Finally, because of

Author's personal copy

P. Belli et al. / Nuclear Physics A 824 (2009) 101-114

106

Table 1

Chain	Nuclide	Activity (mBq/kg)
²³² Th	²²⁸ Ac	≤ 210
	²¹² Pb	≤ 230
	²⁰⁸ Tl	\leq 73 [*]
²³⁵ U	²²⁷ Th	= 361(340)
	223 Ra	= 365(229)
	²¹⁹ Rn	= 365(229)
²³⁸ U	214 Pb + 214 Bi	=700(70)
	⁴⁰ K	≤ 1700
	⁶⁰ Co	≤ 39
	¹³⁷ Cs	≤ 58
	^{138}La	= 680(50)
	¹⁵² Eu	≤ 130
	¹⁵⁴ Eu	$\leqslant 60$
	¹⁷⁶ Lu	≤ 50

Radioactive contamination of the CeCl₃ crystal measured with the HP Ge spectrometry. The limits are given at 90% C.L.

* 208 Tl branching in 232 Th chain is 35.94%. Thus 208 Tl activity of 73 mBq/kg corresponds to 203 mBq/kg in 232 Th.

its hygroscopy, the crystal was measured together with the plastic and copper container which hosted the CeCl₃ and which also could be contaminated; thus, the observed additional activities of ²³⁵U and ²³⁸U should be considered as an upper limits which could be present in the CeCl₃ crystal.

3. New limits on 2β decays of ¹³⁶Ce and ¹³⁸Ce

As was already stated in the Introduction, three Ce isotopes could decay through double beta processes: ¹³⁶Ce $(2\beta^+/\epsilon\beta^+/2\epsilon)$ decay, Q = 2419(13) keV), ¹³⁸Ce (2ϵ) capture, Q = 693(10) keV), and ¹⁴²Ce $(2\beta^- \text{ decay}, Q = 1417(2)$ keV). Because the first excited state of ¹⁴²Nd has an energy of 1576 keV and cannot be populated in $2\beta^-$ decay of ¹⁴²Ce, we cannot search for this process in the present measurements. With natural abundances of $\delta = 0.185\%$ for ¹³⁶Ce and $\delta = 0.251\%$ for ¹³⁸Ce, the investigated CeCl₃ crystal (mass of 6.9 g) contains the following number of ¹³⁶Ce and ¹³⁸Ce nuclei: $N_{136} = 3.12 \times 10^{19}$ and $N_{138} = 4.23 \times 10^{19}$, respectively. For ¹³⁸Ce, only 2ϵ capture, and only to the ground state of ¹³⁸Ba is possible. The physics for the ¹³⁶Ce is more rich. Two positrons could be emitted in the $2\beta^+$ decay of ¹³⁶Ce with the total energy of 375 keV (thus, only the ground state of ¹³⁶Ba can be populated, see Fig. 2). Annihilation of these positrons will give four γ 's of 511 keV leading to extra rate of the 511 keV peak in the HP Ge detector. In the $\epsilon\beta^+$ decay, not only the ground state but also the first excited level of ¹³⁶Ba at 818.5 keV could be populated. In the 2ϵ capture, many excited 0⁺ and 2⁺ levels of ¹³⁶Ba – up to the level of 2399.9 keV – could be populated with the subsequent emission of different γ quanta in the deexcitation process; see scheme on Fig. 2.

In general, we do not observe any additional activity in the spectrum of the CeCl₃ crystal which could indicate the presence of 2β processes in ¹³⁶Ce and ¹³⁸Ce, thus in the following only limits on the corresponding $T_{1/2}$ values are given. The $2K2\nu$ capture of the ¹³⁶Ce (¹³⁸Ce) to the ground state of ¹³⁶Ba (¹³⁸Ba) is not considered

The $2K2\nu$ capture of the ¹³⁶Ce (¹³⁸Ce) to the ground state of ¹³⁶Ba (¹³⁸Ba) is not considered here because as result of such a process only low energy X rays are emitted ($E \simeq 32-37$ keV) which are effectively absorbed in the CeCl₃ crystal, in its housing and in the holder of the HP

P. Belli et al. / Nuclear Physics A 824 (2009) 101-114

Fig. 2. Scheme of the nuclear triplet 136 Ce $-{}^{136}$ La $-{}^{136}$ Ba [13,29]. Energies of the excited levels of 136 Ba and emitted in deexcitation process γ quanta are rounded to 1 keV. Relative intensities of γ 's are given in parentheses.

Ge detector. This gives a low detection efficiency and ensures low sensitivity in comparison with that obtained in experiment [7], where a CeF₃ crystal scintillator was used as the detector itself of such processes (the so-called "source = detector" approach); efficiency for X rays was close to 1 that resulted in the limits: $T_{1/2}(2K2\nu) > 2.7 \times 10^{16}$ yr for ¹³⁶Ce and $T_{1/2}(2K2\nu) > 3.7 \times 10^{16}$ yr for ¹³⁸Ce at 90% C.L. [7].

3.1. $2\varepsilon 0v$ captures in ¹³⁶Ce (¹³⁸Ce) to the ground state of ¹³⁶Ba (¹³⁸Ba)

In the neutrinoless process, in addition to the X rays described above and visible in our measurements with very low efficiencies, some other particle(s) should be emitted to take away the energy released by the two neutrinos in the 2ν process. Usually a (bremsstrahlung) gamma quantum is assumed, and below we also suppose deexcitation by one γ quantum. Its energy will be equal to $E_{\gamma} = Q - E_{b1} - E_{b2}$, where E_{b1} and E_{b2} is the binding energy of the first and of the second captured electron on the corresponding atomic shells. For Ba atom, the binding energies on the K and L_1, L_2, L_3 shells are equal: $E_K = 37.4, E_{L_1} = 6.0, E_{L_2} = 5.6$ and $E_{L_3} = 5.2$ keV. Thus, the expected energy of the γ quantum for the $2\varepsilon 0\nu$ capture: ¹³⁶Ce \rightarrow ¹³⁶Ba(g.s.), is equal to: (i) $E_{\gamma} = 2344$ keV for $2K0\nu$; (ii) $E_{\gamma} = 2376$ keV for $KL0\nu$ (energy resolution of the HP Ge detector does not allow to distinguish between L_1, L_2 and L_3 transitions); (iii) $E_{\gamma} = 2407$ keV for $2L0\nu$ processes.

Fig. 3 shows the energy spectrum of the CeCl₃ sample in the region of 2K0v, KL0v and 2L0v decays of ¹³⁶Ce and ¹³⁸Ce. The expected peaks are not evident, and we can give only a limit on the half life:

$$\lim T_{1/2} = \ln 2 \cdot \eta \cdot N \cdot t / \lim S, \tag{1}$$

P. Belli et al. / Nuclear Physics A 824 (2009) 101-114

Fig. 3. (Color online.) Part of the CeCl₃ experimental spectrum in the energy region of the $2\varepsilon0\nu$ captures in ¹³⁶Ce (a) and ¹³⁸Ce (b). The arrows show the expected energies for the $2K0\nu$, $KL0\nu$ and $2L0\nu$ decays; their error bars reflect the uncertainty in the knowledge of the atomic mass differences: 13 keV for ¹³⁶Ce–¹³⁶Ba and 10 keV for ¹³⁸Ce–¹³⁸Ba. The results of the fit of some peaks are also shown as examples: (a) the 2615 keV peak of ²⁰⁸Tl and the expected peak at 2344 keV (¹³⁶Ce $2K0\nu$); (b) the 609 keV peak of ²¹⁴Bi and the expected peak at 619 keV (¹³⁸Ce $2K0\nu$).

where η is the efficiency to detect a corresponding γ quantum; N is the number of ¹³⁶Ce or ¹³⁸Ce nuclei; t is the time of measurement (t = 1279.9 h); and lim S is a limit on the peak area which could be excluded at some confidence level for given experimental data.

In the so-called "1 σ approach", the excluded number of real events that could be invisible in the spectrum is estimated as a square root of the number of background counts in a suitably chosen energy region; such an evaluation is simple but gives the right scale of sensitivity of an experiment. Taking into account that the background rate at the energies of $2\varepsilon 0\nu$ decay of ¹³⁶Ce is near 5 counts/keV (see Fig. 3a) and the expected width of the peaks in this region is 5 keV, we obtain lim S = 8 at 90% C.L. Together with $N_{136} = 3.12 \times 10^{19}$ and the efficiency $\eta = 1.1\%$, it gives $T_{1/2} = 4.3 \times 10^{15}$ yr.

Further, to obtain the limit on the $2K0\nu$ capture of ¹³⁶Ce (the expected energy of the peak is 2344 keV), the experimental spectrum in the range of 2330–2360 keV was fitted, using the standard least square procedure, by the sum of the straight line (representing the background here) and a Gaussian with fixed centre and width. As a result of the fitting (see Fig. 3a, $\chi^2/n.d.f. = 1.1$), the obtained area for the 2344 keV peak is equal (4.3 ± 4.4) counts, giving no evidence for the

effect. The maximum number of excluded events was calculated with the Feldman–Cousins procedure [28] as $\lim S = 11.5$ at 90% C.L. This gives the limit: $T_{1/2} = 3.0 \times 10^{15}$ yr. We also have to take into account that, because the atomic mass difference ${}^{136}\text{Ce}{-}^{136}\text{Ba}$ is known currently with an uncertainty of 13 keV, the same uncertainty has the energy of the expected $2K0\nu$ peak: (2344 ± 13) keV. Because of this, we repeat the fitting procedure with the centre of the Gaussian in the range of 2331–2357 keV with step of 1 keV recalculating the $T_{1/2}$ limit. The final conservative limit on $2K0\nu$ decay of ${}^{136}\text{Ce}$ is:

$$T_{1/2}(^{136}\text{Ce}, 2K0\nu, \text{g.s.}) > 1.6 \times 10^{15} \text{ yr}$$
 at 90% C.L.

The $T_{1/2}$ limits on $KL0\nu$ and on $2L0\nu$ decays of ¹³⁶Ce were obtained in the same way as:

$$T_{1/2}(^{136}\text{Ce}, KL0\nu, \text{g.s.}) > 1.4 \times 10^{15} \text{ yr}$$
 at 90% C.L.,
 $T_{1/2}(^{136}\text{Ce}, 2L0\nu, \text{g.s.}) > 1.1 \times 10^{15} \text{ yr}$ at 90% C.L.

For $2\varepsilon 0\nu$ decays of ¹³⁸Ce, the expected energies of γ quanta have the following values: $E_{\gamma} = 619$ keV for $2K0\nu$, $E_{\gamma} = 650$ keV for $KL0\nu$ and $E_{\gamma} = 681$ keV for $2L0\nu$ processes (see Fig. 3b). With background of near 55 counts/keV in this region and width of the peak of near 3 keV, expected lim S is 21 events at 90% C.L. With efficiency $\eta = 2.7\%$ and number of nuclei $N_{138} = 4.23 \times 10^{19}$, we could expect limits at the level of $T_{1/2} > 5.5 \times 10^{15}$ yr. For $2K0\nu$ decay of ¹³⁸Ce, the spectrum was fitted in energy region 605–635 keV by straight

For 2*K*0*v* decay of ¹³⁸Ce, the spectrum was fitted in energy region 605–635 keV by straight line (as background), Gaussian with centre at 609.3 keV (²¹⁴Bi) and Gaussian at 619 keV (expected 2*K*0*v* peak); this gives $S = (-17.1 \pm 12.4)$ counts (see Fig. 3b). With the Feldman– Cousins procedure one obtains $\lim S = 7.5$ at 90% C.L. which corresponds to limit $T_{1/2} =$ 1.5×10^{16} yr. However, due to uncertainty of 10 keV in the atomic mass difference ¹³⁸Ce– ¹³⁸Ba and to the existence of a peak-like structures at energies of 614, 623 and 626 keV, the final conservative result is more modest:

$$T_{1/2}(^{138}\text{Ce}, 2K0\nu, \text{g.s.}) > 1.9 \times 10^{15} \text{ yr}$$
 at 90% C.L.

Nevertheless, it is slightly better than the limit obtained in Ref. [17]: $T_{1/2} > 1.8 \times 10^{15}$ yr. Similar procedure applied in the case of the *KL*0*v* and 2*L*0*v* decays of ¹³⁸Ce gives the limits:

$$T_{1/2}(^{138}\text{Ce}, KL0\nu, \text{g.s.}) > 4.4 \times 10^{15} \text{ yr}$$
 at 90% C.L.
 $T_{1/2}(^{138}\text{Ce}, 2L0\nu, \text{g.s.}) > 4.6 \times 10^{15} \text{ yr}$ at 90% C.L.

3.2. 2ε captures in ¹³⁶Ce to excited levels of ¹³⁶Ba

The high energy release in the ¹³⁶Ce 2ε capture allows the population of many excited 0⁺ and 2⁺ levels of ¹³⁶Ba (see Fig. 2). In a subsequent deexcitation process, a cascade of a few γ quanta (together with conversion electrons and e^+e^- pairs) will be emitted. To calculate the efficiencies of the HP Ge detector for these γ 's, corresponding cascades were simulated with the EGS4 code [27] with initial kinematics given by the DECAY0 event generator [30] where the total scheme of the decay was described. In particular, it gave the possibility to take into account summing effects when few γ 's were emitted (this decreases to some extent the efficiencies for specific γ 's in comparison as they would be emitted as single particles).

The limits on $T_{1/2}$ values were obtained in a way similar to the one described in the previous section: fitting the proper energy region by the sum of the background (straight line) and of the Gaussian searched for. Widths of the Gaussians were known from those of neighbouring

peaks from natural radioactivity. However, in contrast to the quite big uncertainty in position of the expected peaks in the $2K0\nu$, $KL0\nu$, $2L0\nu$ decays of ¹³⁶Ce to the ground state of ¹³⁶Ba (13 keV), energies of deexcitation γ quanta are known with high precision (< 0.2 keV) [13]; this allows to fix the positions of the searched Gaussians.

In the $2\varepsilon 2\nu$ capture in ¹³⁶Ce to the first excited level of ¹³⁶Ba (2_1^+) at 819 keV, in addition to X rays only one γ quantum will be emitted with $E_{\gamma} = 819$ keV. Peak at 819 keV is not observed (see Fig. 1). Excluded peak area is equal to $\lim S = 29$ at 90% C.L., and the related efficiency is $\eta = 2.3\%$. This gives the following limit:

$$T_{1/2}(^{136}\text{Ce}, 2\varepsilon 2\nu, 819 \text{ keV}) > 2.5 \times 10^{15} \text{ yr}$$
 at 90% C.L.

This limit is valid for any $2\varepsilon 2\nu$ capture (2K, KL, 2L and others) because it was derived by using only the energy of the deexcitation γ .

In the neutrinoless $(2\varepsilon 0\nu)$ process ${}^{136}\text{Ce} \rightarrow {}^{136}\text{Ba}(819 \text{ keV})$, two γ 's are emitted: one is the deexcitation γ with $E_{\gamma} = 819$ keV, and the second one takes off rest of the energy release; for $2K0\nu$ decay its energy is $E_{\gamma} = (1526 \pm 13)$ keV. Thus, it is more preferable to use the peak at 819 keV to derive the limit on $T_{1/2}$ for this process, since: (1) the energy of the γ is known exactly, and (2) in this case the limit will be valid for any $2\varepsilon 0\nu$ capture. (For these reasons we will use only deexcitation γ 's also in the following.) However, the emission of the second γ decreases the efficiency from $\eta = 2.3\%$ to $\eta = 2.0\%$ that results in the limit:

$$T_{1/2}(^{136}\text{Ce}, 2\varepsilon 0\nu, 819 \text{ keV}) > 2.2 \times 10^{15} \text{ yr}$$
 at 90% C.L.

In the $2\varepsilon 2\nu$ decay of ¹³⁶Ce to the second excited level of ¹³⁶Ba (2⁺₂, 1551 keV), three deexcitation γ 's are emitted with corresponding probabilities [13,29] and energies $E_{\gamma_1} = 732$ keV, $E_{\gamma_2} = 819$ keV and $E_{\gamma_3} = 1551$ keV. The best sensitivity to the effect searched for gives absence of the 732 keV peak with $\lim S = 5.9$ and efficiency $\eta = 1.0\%$:

$$T_{1/2}(^{136}\text{Ce}, 2\varepsilon 2\nu, 1551 \text{ keV}) > 5.4 \times 10^{15} \text{ yr}$$
 at 90% C.L.

In the $2\varepsilon 0\nu$ decay, emission of an additional γ quantum, which takes off the rest of the energy instead released by the 2 neutrinos in the 2ν process, leads to decrease in efficiency to $\eta = 0.89\%$ due to summing effects, and gives the $T_{1/2}$ limit:

$$T_{1/2}(^{136}\text{Ce}, 2\varepsilon 0\nu, 1551 \text{ keV}) > 4.8 \times 10^{15} \text{ yr}$$
 at 90% C.L.

Limits for transitions to other excited levels of ¹³⁶Ba were obtained in similar way. A summary of the results is given in Table 2.

3.3. Resonant 2ε captures in ¹³⁶Ce

The transitions to the excited ¹³⁶Ba levels with energies of 2392.1 keV and 2399.9 keV are the most interesting ones because of the possible resonant enhancement of the process in result of energy degeneracy. The energy release in the 2*L* capture of ¹³⁶Ce is equal to (2407 ± 13) keV which is very close to the energy of these excited levels. In addition, both of them have spin and parity of $(1^+, 2^+)$ [29], and the 2*L* decays are not suppressed by big change in spin and parity.

The possibility of resonant neutrinoless double electron capture was discussed long ago in Refs. [31–33], where an enhancement of the rate by few orders of magnitude was predicted for perfect energy coincidence between the released energy and the energy of an excited state ($\simeq 10 \text{ eV}$). In this case the expected half lives could be as low as 10^{24} yr, and the corresponding

Table 2

Process	Level of daughter	E_{γ}	$T_{1/2}$ limit (yr) at 90% C.L.	
of decay	nucleus	(keV)	Present work	Best previous result
136 Ce $\rightarrow ^{136}$ Ba				
$2\beta^+0\nu$	g.s.	511	$>4.2\times10^{15}$	$> 6.9 \times 10^{17} \ [26]^a$
$2\beta^+ 2\nu$	g.s.	511	$> 4.2 \times 10^{15}$	$> 1.8 \times 10^{16} [17]$
$\epsilon \beta^+ 0 \nu$	g.s.	511	$> 2.6 \times 10^{15}$	$> 3.8 \times 10^{16} [17]$
$\epsilon \beta^+ 2 \nu$	g.s.	511	$> 2.6 \times 10^{15}$	$> 1.8 \times 10^{15} [17]$
$\epsilon \beta^+ 0 \nu$	2^+_1 819 keV	511	$> 2.4 \times 10^{15}$	-
$\epsilon \beta^+ 2\nu$	2^+_1 819 keV	511	$> 2.4 \times 10^{15}$	-
2K0v	g.s.	2331-2357	$> 1.6 \times 10^{15}$	$> 6.0 \times 10^{15} [17]$
KL0v	g.s.	2363-2389	$> 1.4 \times 10^{15}$	-
$2L0\nu$	g.s.	2394-2420	$> 1.1 \times 10^{15}$	-
2K2v	g.s.	-	-	$> 2.7 \times 10^{16} [7]$
$2\varepsilon 0\nu$	2^+_1 819 keV	819	$> 2.2 \times 10^{15}$	-
$2\varepsilon 2\nu$	2^+_1 819 keV	819	$> 2.5 \times 10^{15}$	-
$2\varepsilon 0\nu$	2^+_2 1551 keV	732	$> 4.8 \times 10^{15}$	-
$2\varepsilon 2v$	2^+_2 1551 keV	732	$> 5.4 \times 10^{15}$	-
$2\varepsilon 0\nu$	0^+_1 1579 keV	761	$> 5.4 \times 10^{15}$	-
$2\varepsilon 2\nu$	0_1^+ 1579 keV	761	$> 6.3 \times 10^{15}$	_
$2\varepsilon 0\nu$	2^+_3 2080 keV	2080	$> 1.2 \times 10^{15}$	_
$2\varepsilon 2\nu$	2^+_3 2080 keV	2080	$> 1.3 \times 10^{15}$	-
$2\varepsilon 0\nu$	2_4^+ 2129 keV	1310	$>2.9\times10^{15}$	_
$2\varepsilon 2\nu$	2_4^+ 2129 keV	1310	$> 3.2 \times 10^{15}$	_
$2\varepsilon 0\nu$	0^+_2 2141 keV	1323	$> 5.3 \times 10^{15}$	-
$2\varepsilon 2\nu$	0^+_2 2141 keV	1323	$> 6.1 \times 10^{15}$	-
$2\varepsilon 0\nu$	$(2_5)^+$ 2223 keV	1404	$> 5.4 \times 10^{15}$	_
$2\varepsilon 2\nu$	$(2_5)^+ 2223 \text{ keV}$	1404	$> 5.6\times 10^{15}$	-
$2\varepsilon 0\nu$	0_3^+ 2315 keV	819	$> 5.4 \times 10^{15}$	-
$2\varepsilon 2\nu$	0_3^+ 2315 keV	819	$> 5.6 \times 10^{15}$	-
$2\varepsilon 0\nu$	$(1_1^+, 2_6^+)$ 2392 keV	1573	$> 2.4 \times 10^{15}$	-
$2\varepsilon 2\nu$	$(1_1^+, 2_6^+)$ 2392 keV	1573	$>2.4\times10^{15}$	-
$2\varepsilon 0\nu$	$(1^+_2, 2^+_7)$ 2400 keV	1581	$>4.1\times10^{15}$	-
$2\varepsilon 2\nu$	$(1^+_2, 2^+_7)$ 2400 keV	1581	$> 4.1 \times 10^{15}$	_
138 Ce $\rightarrow ^{138}$ Ba				
2K0v	g.s.	609–629	$> 1.9 \times 10^{15}$	$> 1.8 \times 10^{15}$ [17]
KL0v	g.s.	640–660	$> 4.4 \times 10^{15}$	-
2L0v	g.s.	671–691	$> 4.6 \times 10^{15}$	-
2K2v	g.s.	-	-	$> 3.7 \times 10^{16}$ [7]

Half life limits on 2β processes in ¹³⁶Ce and ¹³⁸Ce isotopes. The energies of the γ lines, which were used to set the $T_{1/2}$ limit, are listed in column 3.

^a At 68% C.L.

experiments even could compete with searches for neutrinoless $2\beta^-$ decay in sensitivity to the neutrino mass.

Theoretical expectations were given in Ref. [33] for the transition ${}^{112}Sn(2K0\nu) \rightarrow {}^{112}Cd(1871 \text{ keV})$. In Ref. [34] the following resonant captures were calculated: ${}^{112}Sn(2K0\nu) \rightarrow {}^{112}Cd(1871 \text{ keV})$.

 ${}^{112}\text{Cd}(1871 \text{ keV}), \ {}^{136}\text{Ce}(2K0\nu) \rightarrow {}^{136}\text{Ba}(2315 \text{ keV}), \ {}^{152}\text{Gd}(KL0\nu) \rightarrow {}^{152}\text{Sm}(g.s.), \\ {}^{162}\text{Er}(2K0\nu) \rightarrow {}^{162}\text{Dy}(1745 \text{ keV}), \ {}^{164}\text{Er}(2L0\nu) \rightarrow {}^{164}\text{Dy}(g.s.), \ {}^{180}\text{W}(2K0\nu) \rightarrow {}^{180}\text{Hf}(g.s.).$ The level at 2315 keV, considered in [34] for the decay: ${}^{136}Ce(2K0\nu) \rightarrow {}^{136}Ba$, is quite far from resonance conditions ($\Delta(Q - E_{\text{exc}}) = (29 \pm 13)$ keV) and half life estimation was quite pessimistic (5.0 × 10²⁹ yr for $m_{\nu} = 1$ eV). It is interesting to note perfect resonant conditions for the decay ${}^{152}\text{Gd}(KL0\nu) \rightarrow {}^{152}\text{Sm}(g.s.)$ with $\Delta(Q - E_{\text{exc}}) = (0.1 \pm 1.2)$ keV and estimated half life of 5.0×10^{24} yr [34].

There were only few searches in this field to-date. The following direct experiments should be listed:

- $\begin{array}{l} \ ^{74}\mathrm{Se}(2L0\nu) \rightarrow \ ^{74}\mathrm{Ge}(1204 \ \mathrm{keV}) T_{1/2} > 5.5 \times 10^{18} \ \mathrm{yr} \ [35]; \\ \ ^{106}\mathrm{Cd}(KL0\nu) \rightarrow \ ^{106}\mathrm{Pd}(2741 \ \mathrm{keV}) T_{1/2} > 3.0 \times 10^{19} \ \mathrm{yr} \ [36]; \\ \ ^{112}\mathrm{Sn}(2K0\nu) \rightarrow \ ^{112}\mathrm{Cd}(1871 \ \mathrm{keV}) T_{1/2} \ \mathrm{limits} \ \mathrm{from} \ 1.4 \times 10^{18} \ \mathrm{to} \ 9.2 \times 10^{19} \ \mathrm{yr} \ [37-40]; \\ \ ^{180}\mathrm{W}(2K0\nu) \rightarrow \ ^{180}\mathrm{Hf}(\mathrm{g.s.}) T_{1/2} \ \mathrm{limits} \ \mathrm{from} \ 5.0 \times 10^{16} \ \mathrm{to} \ 8.6 \times 10^{17} \ \mathrm{yr} \ [41-43]. \end{array}$

Geochemical results for the transitions ${}^{130}Ba(2K0\nu) \rightarrow {}^{130}Xe(2544 \text{ keV})$ and ${}^{130}Ba(2L0\nu)$ \rightarrow ¹³⁰Xe(2608 keV) also have to be mentioned with limit $T_{1/2} > 4.0 \times 10^{21}$ yr [44] and a positive observation declared in [45] with $T_{1/2} = (2.16 \pm 0.52) \times 10^{21}$ yr.

Continuing our consideration of ¹³⁶Ce 2ε decays, we give below the first experimental limits on resonant transitions to the excited 2392.1 keV and 2399.9 keV levels of ¹³⁶Ba.

Only two high energy γ 's will be emitted after population of the 2392 keV level, $E_{\gamma_1} =$ 1573 keV and $E_{\gamma_2} = 819$ keV (see Fig. 2). Both peaks are not observed in the experimental spectrum of the CeCl₃ sample, and only limits on their areas can be derived as explained in previous sections: $\lim S = 29$ counts for 819 keV and $\lim S = 17$ counts for 1573 keV at 90% C.L. Related efficiencies are $\eta = 2.0\%$ and $\eta = 1.3\%$, respectively. Using Eq. (1) with t = 1279.9 h, $N_{136} = 3.12 \times 10^{19}$ and $\lim S = 17$ for the 1573 keV peak, we get:

$$T_{1/2}(^{136}\text{Ce}, 2\varepsilon, 0\nu + 2\nu, 2392 \text{ keV}) > 2.4 \times 10^{15} \text{ yr}$$
 at 90% C.L.

Absence of the 819 keV peak gives a very close result (> 2.2×10^{15} yr).

In the transition to the 2400 keV level of ¹³⁶Ba, two γ 's are emitted, $E_{\nu_1} = 1581$ keV and $E_{\gamma_2} = 819$ keV. Peak at 1581 keV is also absent (lim S = 10 counts), and half life limit is:

$$T_{1/2}(^{136}\text{Ce}, 2\varepsilon, 0\nu + 2\nu, 2400 \text{ keV}) > 4.1 \times 10^{15} \text{ yr}$$
 at 90% C.L.

In recent years resonant $2\varepsilon 0\nu$ captures draw the increasing attention; see [25] for discussion of perspectives to improve sensitivity of such experiments to the level of $T_{1/2} \sim 10^{26}$ yr.

3.4. $\epsilon\beta^+$ decay of ¹³⁶Ce

The $\varepsilon\beta^+$ decay of ¹³⁶Ce is energetically possible to the ground state and to the first excited level of ¹³⁶Ba (819 keV).

The $T_{1/2}$ limit to the ground state can be obtained from the excess of events in the annihilation peak at 511.0 keV. In fact, this peak is a superposition of the annihilation peak with the peak of 510.8 keV from ²⁰⁸Tl. However, the activity related with the ²³²Th chain (based on other peaks in this chain) was not found earlier (Section 2). In the spectrum of the CeCl₃ sample, (72 ± 20) events were detected in the 511 keV peak during 1279.9 h; in the background spectrum we have (125 ± 53) events during 3046.7 h. Scaled to 1279.9 h and subtracted, it gives a difference

of (19 ± 30) events, consistent with 0. With $\lim S = 68$ at 90% C.L. in accordance with the Feldman–Cousins procedure and efficiency $\eta = 5.6\%$, we obtain the half life limit:

$$T_{1/2}(^{136}\text{Ce}, \varepsilon\beta^+, 0\nu + 2\nu, \text{g.s.}) > 2.6 \times 10^{15} \text{ yr} \text{ at } 90\% \text{ C.L.}$$

For the $\varepsilon\beta^+$ decay to the 819 keV level of ¹³⁶Ba, the efficiency for the 511 keV peak is $\eta = 5.1\%$. It gives the limit:

$$T_{1/2}(^{136}\text{Ce}, \varepsilon\beta^+, 0\nu + 2\nu, 819 \text{ keV}) > 2.4 \times 10^{15} \text{ yr}$$
 at 90% C.L.

Estimation based on the absence of the 819 keV peak gives a slightly worse half life limit of 1.9×10^{15} yr.

3.5. $2\beta^+$ decay of ¹³⁶Ce

The $2\beta^+$ decay of ¹³⁶Ce is possible only to the ground state of ¹³⁶Ba. The efficiency for the 511 keV peak is equal in this case to $\eta = 9.0\%$. Together with $\lim S = 68$ counts derived above, it gives:

$$T_{1/2}(^{136}\text{Ce}, 2\beta^+, 0\nu + 2\nu, \text{g.s.}) > 4.2 \times 10^{15} \text{ yr}$$
 at 90% C.L.

4. Conclusions

The measurements performed with a small CeCl₃ crystal and a low-background HP Ge detector (244 cm³) were used to determine the internal radioactive contamination of this crystal. Only limits (90% C.L.) were set for activity of radioactive nuclides in the ²³²Th chain (< 0.2 Bq/kg), of ⁴⁰K (< 1.7 Bq/kg), of ⁶⁰Co (< 0.04 Bq/kg), of ¹³⁷Cs (< 0.06 Bq/kg), and for some radioactive isotopes in the lanthanide series: ¹⁵²Eu (< 0.13 Bq/kg), ¹⁵⁴Eu (< 0.06 Bq/kg), ¹⁷⁶Lu (< 0.05 Bq/kg). However, activity was observed for ²³⁵U as 0.36(19) Bq/kg, ²³⁸U as 0.70(7) Bq/kg, ¹³⁸La as 0.68(5) Bq/kg (U activities could be related with the plastic and copper container of the CeCl₃ crystal). These results are important for further applications of CeCl₃ as crystal scintillators.

The measurements have allowed to set, for the first time, half life limits for different double electron captures in ¹³⁶Ce to the excited levels of ¹³⁶Ba; the obtained results are in the range of $(1-6) \times 10^{15}$ yr. In particular, the resonant $2\varepsilon 0\nu$ captures to the levels of 2392.1 keV and 2399.9 keV of ¹³⁶Ba are limited as $T_{1/2} > 2.4 \times 10^{15}$ yr and $T_{1/2} > 4.1 \times 10^{15}$ yr at 90% C.L., respectively. The sensitivity is restricted by the small mass of the CeCl₃ sample (6.9 g) and by the low natural abundance of ¹³⁶Ce isotope (0.185%). These could be improved in future experiments. In the simplest approach, a Ce sample with mass of $\simeq 1$ kg could be measured underground with a HP Ge detector. More sophisticated scheme with use of big CeCl₃ (or CeF₃, or CeBr₃) scintillator working in coincidence with a HP Ge detector is under consideration too (also in relation with possibility to investigate 2β processes in other scintillators). Expected sensitivity with use of natural Ce is at least around 10^{18} yr, and would be better with Ce enriched in ¹³⁶Ce isotope.

References

- [2] K.W. Kramer, P. Dorenbos, H.U. Gudela, C.W.E. van Eijk, J. Mat. Chem. 16 (2006) 2773.
- [3] K.S. Shah, et al., IEEE Trans. Nucl. Sci. 51 (2004) 2395.

^[1] C.W.E. van Eijk, Nucl. Instrum. Methods A 460 (2001) 1.

- [4] J. Glodo, et al., IEEE Nucl. Sci. Symp. Conf. Rec. 43 (3) (2006) 1574.
- [5] M.D. Birowosuto, et al., IEEE Trans. Nucl. Sci. 53 (2006) 3028.
- [6] K.S. Shah, et al., IEEE Trans. Nucl. Sci. 52 (2005) 3157.
- [7] P. Belli, et al., Nucl. Instrum. Methods A 498 (2003) 352.
- [8] D.P. Landau, J.C. Doran, B.E. Keen, Phys. Rev. B 7 (1973) 4961.
- [9] K.-H. Park, S.-J. Oh, Phys. Rev. B 48 (1993) 14833.
- [10] C.L. Li, B. Wang, R. Wang, H. Wang, Solid State Commun. 144 (2007) 220.
- [11] S.E. Derenzo et al., IEEE Nuclear Science Symposium, Conference Rec. 91CH3100-5, 1991, vol. 1, p. 143.
- [12] S.E. Derenzo, W.W. Moses, in: Proceedings of International Conference on Heavy Scintillations for Science and Industrial Applications, Editions Frontières, 1993, p. 125.
- [13] R.B. Firestone, et al., Table of Isotopes, 8th ed., John Wiley, New York, 1996, and CD update, 1998.
- [14] J.K. Bohlke, et al., J. Phys. Chem. Ref. Data 34 (2005) 57.
- [15] R. Bernabei, et al., Nucl. Instrum. Methods A 555 (2005) 270;
- R. Bernabei, et al., Ukr. J. Phys. 51 (2006) 1037.
- [16] B.D. Milbrath, J.I. McIntyre, R.C. Runkle, L.E. Smith, IEEE Trans. Nucl. Sci. 53 (2006) 3031.
- [17] F.A. Danevich, et al., Nucl. Phys. A 694 (2001) 375.
- [18] W. Drozdowski, et al., IEEE Trans. Nucl. Sci. 55 (2008) 2420.
- [19] P. Belli, et al., Nucl. Instrum. Methods A 572 (2007) 734.
- [20] P. Belli, et al., Nucl. Phys. A 789 (2007) 15.
- [21] F.T. Avignone III, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80 (2008) 481.
- [22] V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 80 (2002) 83.
- [23] A.S. Barabash, Czech. J. Phys. 56 (2006) 437.
- [24] G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729 (2003) 337.
- [25] A.S. Barabash, arXiv:0807.2948 [hep-ex].
- [26] R. Bernabei, et al., Nuovo Cimento A 110 (1997) 189.
- [27] W.R. Nelson et al., SLAC Report 265, Stanford, 1985.
- [28] G.J. Feldman, R.D. Cousins, Phys. Rev. D 57 (1998) 3873.
- [29] A.A. Sonzogni, Nucl. Data Sheets 95 (2002) 837.
- [30] O.A. Ponkratenko, et al., Phys. At. Nucl. 63 (2000) 1282; V.I. Tretyak, in preparation.
- [31] R.G. Winter, Phys. Rev. 100 (1955) 142.
- [32] M.B. Voloshin, G.V. Mitsel'makher, R.A. Eramzhyan, JETP Lett. 35 (1982) 656.
- [33] J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15.
- [34] Z. Sujkowski, S. Wycech, Phys. Rev. C 70 (2004) 052501.
- [35] A.S. Barabash, et al., Nucl. Phys. A 785 (2007) 371.
- [36] P. Belli, et al., Astropart. Phys. A 10 (1999) 115.
- [37] J. Dawson, et al., Nucl. Phys. A 799 (2008) 167.
- [38] A.S. Barabash, et al., Nucl. Phys. A 807 (2008) 269.
- [39] J. Dawson, et al., Phys. Rev. C 78 (2008) 035503.
- [40] M.F. Kidd, J.H. Esterline, W. Tornow, Phys. Rev. C 78 (2008) 035504.
- [41] A.Sh. Georgadze, et al., Phys. At. Nucl. 58 (1995) 1093.
- [42] F.A. Danevich, et al., Nucl. Phys. A 717 (2003) 129.
- [43] P. Belli, et al., arXiv:0811.2348 [nucl-ex], and ROM2F/2008/22, Phys. Rev. C, submitted for publication.
- [44] A.S. Barabash, R.R. Saakyan, Phys. At. Nucl. 59 (1996) 179.
- [45] A.P. Meshik, et al., Phys. Rev. C 64 (2001) 035205.