

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research A 556 (2006) 259–265

<www.elsevier.com/locate/nima>

Application of $PbWO₄$ crystal scintillators in experiment to search for 2β decay of 116 Cd

F.A. Danevich^{a,*}, A.Sh. Georgadze^a, V.V. Kobychev^a, B.N. Kropivyansky^a, S.S. Nagorny^a, A.S. Nikolaiko^a, D.V. Poda^a, V.I. Tretyak^a, I.M. Vyshnevskyi^a, S.S. Yurchenko^a, B.V. Grinyov^b, L.L. Nagornaya^b, E.N. Pirogov^b, V.D. Ryzhikov^b, V.B. Brudanin^c, Ts. Vylov^c, A. Fedorov^d, M. Korzhik^d, A. Lobko^d, O. Missevitch^d

> ^aInstitute for Nuclear Research, Prospekt Nauki 47, MSP 03680 Kiev, Ukraine ^bInstitute for Scintillation Materials, 61001 Kharkov, Ukraine c Joint Institute for Nuclear Research, 141980 Dubna, Russia d Institute for Nuclear Problems, 220050 Minsk, Belarus

Received 3 May 2005; received in revised form 24 August 2005; accepted 29 September 2005 Available online 16 November 2005

Abstract

Lead tungstate (PbWO₄) crystal scintillators are discussed as an active shield and light guides in ¹¹⁶Cd double-beta decay experiment with Cadmium tungstate (CdWO₄) scintillators. Scintillation properties and radioactive contamination of PbWO₄ scintillators were investigated. Energy resolution of CdWO₄ detector, coupled to PbWO₄ light guide, was tested. Efficiency of PbWO₄-based active shield to suppress background from the internal contamination of $PbWO₄$ crystals, as well as possible contribution from radioactivity of copper shield and phototubes were calculated. Using of lead tungstate crystal scintillators as high-efficiency 4π active shield could allow to build sensitive 2 β experiment $(T_{1/2}^{0.2\beta} \sim 10^{26} \text{ yr})$ to search for 0v2 β decay of ¹¹⁶Cd with ¹¹⁶CdWO₄ crystal scintillators. \odot 2005 Elsevier B.V. All rights reserved.

PACS: 29.40.Mc; 23.60. + e; 23.40. - s

Keywords: Scintillation detector; PbWO4 and CdWO4 crystals; Double-beta decay; Low counting experiments

1. Introduction

Studies of the 116 Cd 2 β decay with the help of cadmium tungstate (CdWO₄) crystal scintillators enriched in 116 Cd to 83% have been performed in the Solotvina Underground Laboratory [\[1\]](#page-5-0) since 1988. The results obtained in the different phases of these researches have been published earlier [\[2\].](#page-5-0) Beginning from 1998, the experiment was carried out in collaboration with the group from the University and INFN Firenze, Italy [\[3–6\]](#page-5-0).

In the apparatus, which is described in detail in Refs. [\[3,5\],](#page-5-0) four 116CdWO_4 crystals (total mass 330 g) were exploited. They are viewed by a low background 5 in. phototube (PMT) through light guide \varnothing 10 \times 55 cm, which is glued of two parts: high pure quartz (25 cm) and plastic scintillator. The enriched $\frac{116}{16}$ CdWO₄ crystals were surrounded by an active shield made of 15 natural $CdWO₄$ crystals of large volume with total mass of 20.6 kg. These are viewed by a PMT through an active plastic light guide \varnothing 17 x 49 cm. The whole CdWO₄ array is situated within an additional active shield made of plastic scintillator $40 \times 40 \times 95$ cm, thus, together with both active light guides, a complete 4π active shield of the ¹¹⁶CdWO₄ detector was provided. Due to the active and passive shields, and as a result of the time–amplitude and pulseshape analysis of the data, the background rate of 116 CdWO₄ detector in the energy region 2.5–3.2 MeV $(Q_{2B}$ energy of ¹¹⁶Cd is 2805 keV) was reduced to 0.04 counts/(yr kg keV). It is one of the lowest background

^{*}Corresponding author. Tel.: $+380445251111$; fax: $+380445254463$. E-mail address: danevich@kinr.kiev.ua (F.A. Danevich).

^{0168-9002/\$ -} see front matter \odot 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.nima.2005.09.049

which has ever been reached with crystal scintillators. After 14183 h of data taking in the Solotvina Underground Laboratory the half-life limit on $0v2\beta$ decay of 116Cd was set as $T_{1/2} \ge 1.7 \times 10^{23}$ yr at 90% C.L., which corresponds to an upper bound on the effective Majorana neutrino mass $\langle m_v \rangle \leq 1.7$ eV [\[5\].](#page-5-0) This result is among the strongest world-wide restrictions (in addition to bounds obtained in experiments with ⁷⁶Ge [\[7,8\],](#page-5-0) ⁸²Se and ¹⁰⁰Mo [\[9\],](#page-5-0) ¹³⁰Te [\[10\]](#page-5-0), and 136 Xe [\[11\]\)](#page-5-0). CdWO₄ crystals possess several unique properties required for a 2β decay experiment: good scintillation characteristics, low level of intrinsic radioactivity, and possibility of pulse-shape discrimination to reduce the background.

To enhance sensitivity of ¹¹⁶Cd experiment to the level of neutrino mass 0.1–0.05 eV, one has to increase the measurement time and the mass of enriched 116 CdWO₄, improve the energy resolution and reduce the background of the detector. As it was shown by Monte Carlo calculations, the required sensitivity could be achieved by using 150 kg of 116CdWO_4 crystals placed into a large volume of high-purity liquid (CAMEO project [\[12\]](#page-5-0)). The project calls for the background reduction from the current 0.04 counts/(yr keV kg) to $10^{-3} - 10^{-4}$ counts/(yr keV kg). To decrease the background, the CAMEO project intends to use ≈ 1000 t of high-purity water or liquid scintillator $(\approx 10^{-15} \text{ g/g}$ for ²³⁸U and ²³²Th) as a shield for ¹¹⁶CdWO₄ crystals. Due to low density of these liquids, the necessary dimensions of the shields are huge ($\approx \varnothing$ 11 \times 10 m).

We propose an alternative solution for a sensitive 2β decay experiment with $\frac{116}{10}$ CdWO₄ by using lead tungstate (PbWO₄) crystal scintillators as high-efficiency 4π active shield. PbWO₄ crystal scintillators have been developed as heavy and fast detectors [\[13\]](#page-5-0) for high-energy physics experiments. Scintillation characteristics of $PbWO₄$ have been intensively studied during the last decade [\[14–19\]](#page-5-0). High registration efficiency to γ quanta, very good transparency (a few meters in the region of $CdWO₄$ emission spectrum [\[20\]\)](#page-5-0), substantial difference of scintillation decay time in comparison with CdWO4, well developed tons-scale production [\[21\]](#page-6-0) make this material very attractive to build a relatively small yet sensitive experiment to search for 2 β decay of ¹¹⁶Cd. In this paper, we study the possibility of applying $PbWO₄$ crystals as material for light guides and active shield in a $\frac{116}{10}$ Cd double-beta decay experiment with CdWO₄ scintillators.

2. Measurements and results

2.1. Scintillation properties

The main properties of $PbWO₄$ crystal scintillators are presented in Table 1 where characteristics of $CdWO₄$ are also given for comparison. Measurements were carried out with two clear, colorless, undoped $PbWO₄$ crystals grown by Czochralski method. One crystal $(45 \times 22 \times 22 \text{ mm})$, 182 g of mass, referred below as PWO-1) was produced in the Institute for Scintillation Materials (Kharkov, Uk-

Table 1 Properties of PbWO4 and CdWO4 crystal scintillators

	PbWO ₄	CdWO ₄
Density (g/cm^3)	8.28	8.0
Melting point $(^{\circ}C)$	1123	1325
Structural type	Sheelite	Wolframite
Cleavage plane	Weak (101)	Marked (010)
Hardness (Mohs)	٦	$4 - 4.5$
Wavelength of emission maximum (mm)	$420 - 440$	480
Refractive index	2.2	$2.2 - 2.3$
Effective average decay time ^a (μ s)	0.01	13

 a For γ rays, at indoor temperature.

Fig. 1. Energy spectra measured by PbWO₄ scintillation crystal $(45 \times$ 22 × 22 mm) with (a) ²⁰⁷Bi and (b) ¹³⁷Cs γ sources at two temperatures: +24 °C (solid lines) and -18 °C (points). For the spectra measured at -18 °C, the fits of the ²⁰⁷Bi (570 keV) and ¹³⁷Cs (662 keV) γ peaks by Gaussian plus exponential functions are also shown.

raine), and the second one $(32 \times 32 \times 10 \text{ mm}, 83 \text{ g} \text{ of mass},$ PWO-2), produced in the Bogoroditsk Technical Chemical Plant (Russia) [\[21\]](#page-6-0), was supplied by the Research Institute of Nuclear Problems (Minsk, Belarus).

Response of the PWO-1 scintillator to γ rays was measured with ¹³⁷Cs and ²⁰⁷Bi γ sources at temperatures $+24$ and -18 °C. The crystal was wrapped by PTFE reflector tape and optically coupled by Dow Corning Q2- 3067 couplant to PMT XP2412. The measured energy spectra are presented in Fig. 1. The energy resolution $FWHM = 45\%$ and 36% was obtained at the temperature -18 ° C for 570 and 662 keV γ rays, respectively. The relative pulse amplitude has been increased in \approx 3 times

with the detector cooling from $+24$ to -18 °C. The temperature of the detector was stabilized and measured with an accuracy of ± 0.5 °C.

2.2. α/β ratio

The α/β ratio was measured with the PWO-1 crystal using a collimated 241 Am α source and thin $(\approx 0.65 \,\text{mg/cm}^2)$ mylar absorbers to obtain α particles in the energy range $2.1-4.6$ MeV. The energies of α particles were determined with the help of a surface-barrier detector. In addition, α peak of ²¹⁰Po ($E_{\alpha} = 5.30$ MeV) from internal contamination of $PbWO₄$ crystal by ²¹⁰Pb (see Subsection 2.3) was used. The dependence of the α/β ratio on energy is depicted in Fig. 2 where the α spectrum measured with the ²⁴¹Am α source is shown too. The α/β ratio increases above 3 MeV: $\alpha/\beta = 0.08(2) + 0.025(5)E_\alpha$, while it decreases as $\alpha/\beta = 0.23(4) - 0.024(14)E_{\alpha}$ at lower energies, where E_{α} is in MeV. The same behaviour of the α/β ratio was observed for CdWO₄ [\[4\],](#page-5-0) calcium tungstate $(CaWO₄)$ [\[22\],](#page-6-0) and zinc tungstate $(ZnWO₄)$ [\[23\]](#page-6-0) crystal scintillators. The energy resolution for ²¹⁰Po α peak was measured as 39%, which is comparable with the energy resolution obtained with γ sources.

2.3. Radioactive contamination of $PbWO₄$ crystal scintillators

To estimate radioactive contamination, the PWO-1 crystal was measured in the Solotvina Underground Laboratory built in a salt mine 430 m underground $(\simeq 1000 \,\mathrm{m}$ of water equivalent) [\[1\]](#page-5-0). The crystal was wrapped by PTFE tape and optically coupled to low radioactive PMT FEU-110. The detector was cooled to -18 °C in a temperature-controlled chamber. The temperature in the chamber was stabilized and measured with an accuracy of ± 0.5 °C. The shaping time of the spectroscopy amplifier was set to $0.8 \mu s$. Amplitude (energy) and arrival time of signals have been recorded by the event-byevent data acquisition system. The energy scale was calibrated with 207 Bi γ source. The energy spectrum accumulated during 2.15 h is shown in Fig. 3. The intense peak at the energy $\approx 1.2 \text{ MeV}$ (in γ scale) can be attributed to intrinsic 210 Po (daughter of 210 Pb from the 238 U family) with activity of 53(1) Bq/kg. The major part of events up to the energy $\approx 1 \text{ MeV}$ can be ascribed to β active ²¹⁰Bi (daughter of ^{210}Pb). The ^{210}Pb contamination of the PWO-2 crystal was measured as 79(3) Bq/kg.

Besides, the raw background data accumulated with the PWO-1 were analyzed by the time–amplitude method (described in detail in Ref. [\[24\]](#page-6-0)), when the energy and arrival time of each event were used for find the fast sequence of β and α decays: ²¹⁴Bi $(Q_{\beta} = 3.27 \text{ MeV}) \rightarrow$ ²¹⁴Po ($E_{\alpha} = 7.69 \text{ MeV}, T_{1/2} = 164 \text{ }\mu\text{s}) \rightarrow {}^{210}\text{Pb}$ (²³⁸U family). To select the β decays of ²¹⁴Bi, the energy threshold was set at 0.3 MeV (interval from 0.3 MeV to the end of the ²¹⁴Bi B spectrum contains 76% of the ²¹⁴Bi β events). For

Fig. 2. Dependence of the α/β ratio on energy measured with the PbWO₄ scintillator $45 \times 22 \times 22$ mm. The crystal was irradiated by α particles from 241Am source through absorbers to obtain energies in 2.1–4.6MeV range (circles). Triangle corresponds to α particles of ²¹⁰Po. (Inset) The α spectrum of 241 Am source measured with mylar absorber to obtain energy 3.94 MeV. Second peak at \approx 73 channel is caused by α decay of ²¹⁰Po (daughter of ^{210}Pb) inside the scintillator.

Fig. 3. Energy spectrum of PbWO4 scintillation crystal (PWO-1) measured in the Solotvina Underground Laboratory at the temperature -18 °C during 2.15 h. Peak at the energy ≈ 1.2 MeV (in γ scale) can be attributed to α decay of ²¹⁰Po from internal contamination of the crystal by ²¹⁰Pb. Broad distribution up to ≈ 1 MeV corresponds to β spectrum of ²¹⁰Bi ($Q_B = 1.16$ MeV).

the α decay of ²¹⁴Po, the energy window 1.6–2.6 MeV (94% of α events) and time interval of 90–1000 µs (67% of 214 Po decays) were chosen. There are no peculiarities in the obtained spectra which could be attributed to the sequence of decays searched for. The limit on the activity of 226 Ra in the PbWO₄ crystal ≤ 10 mBq/kg was set. Comparing this value with the 210 Po activity, we can conclude that equilibrium of the uranium chain in the crystal is strongly broken.

Because the shaping time of the spectroscopy amplifier $(0.8 \,\mu s)$ exceeds the half-life of 212 Po, and taking into

Table 2 Radioactive contaminations in PbWO4 and CdWO4 crystal scintillators

Chain	Source	Activity (mBq/kg)		
		$PbWO_4$	CdWO ₄ [25–27,5]	
232 Th 238 _{I I}	228 Th 226 Ra ^{210}Ph	≤ 13 ≤ 10 $(53-79) \times 10^3$	$\leq 0.004 - 0.039(2)$ ≤ 0.004 ≤ 0.4	

account the α/β ratio, events from the fast sequence of ²¹²Bi β decay $(Q_{\beta} = 2.25 \text{ MeV})$ and ²¹²Po α decay $(E_{\alpha} =$ 8.78 MeV, $T_{1/2}=0.3 \,\mu s$ can result in one event registered in the detector with energy from 2.5 to 5 MeV. In the energy region 3.4–5 MeV (where $\approx 60\%$ of events from the sequence are expected), there are 7 events, which gives the limit on the activity of ²²⁸Th $(^{232}$ Th family) in the PWO-1 crystal ≤ 13 mBq/kg.

The summary of the measured radioactive contamination of the $PbWO₄$ crystal scintillators (or limits on their activities) is given in Table 2 in comparison with CdWO4 scintillators.

2.4. PbWO₄ crystal as light-guide for $CdWO₄$ scintillator

A possibility to use $PbWO_4$ crystal as a light guide for CdWO4 scintillation detector has been tested in measurements. With this aim, the energy resolution and relative pulse amplitude were measured with a $CdWO₄$ crystal in two conditions. First, the $CdWO₄$ crystal $(10 \times 10 \times 10 \text{ mm})$, produced in the Institute for Scintillation Materials, Kharkov), wrapped by PTFE reflector tape, was optically coupled to PMT XP2412. The shaping time of the spectroscopy amplifier was set to $16 \mu s$. The energy resolution was measured with ^{137}Cs , ^{207}Bi , and $^{232}Th \gamma$ sources. In particular, the energy resolution (FWHM) 7.1%, 5.8% and 3.6% were obtained for 662, 1064 and 2615 keV γ lines, respectively. It should be stressed that the energy resolution of 3.6% at the energy 2615 keV was never reported for $CdWO₄$ scintillator. The energy spectrum measured with ²³²Th γ source is presented in Fig. 4(a). Then, the CdWO₄ crystal was viewed by the PMT through the $PbWO₄ crystal PWO-1$ (wrapped by mylar). The crystals and the PMT were optically coupled by Dow Corning Q2-3067 couplant. The energy resolution of 3.9% (for 2615 keV γ line of ²³²Th) and 86% of relative pulse amplitude were obtained (see Fig. 4(b)).

3. Background simulation

The different sources of background in the 2β experiment with 116CdWO_4 crystal scintillators were considered in Ref. [\[12\]](#page-5-0). Here we focus our attention on radioactive contamination of PbWO4 crystals, photomultipliers and copper shield by 232 Th and 238 U. In addition, we consider background due to cosmogenic activation of PbWO₄.

Fig. 4. Energy spectra measured by $CdWO₄$ scintillation crystal $(10 \times 10 \times 10 \text{ mm})$ with ²³²Th γ source in two detector arrangements: (a) the crystal wrapped by PTFE reflector tape optically coupled to PMT; (b) the CdWO₄ crystal viewed by the PMT through the PbWO₄ crystal $45 \times$ 22×22 mm as light guide.

Processes with β , α particles and γ rays were simulated with the help of the GEANT4 package [\[28\]](#page-6-0) and the event generator DECAY0 [\[29\].](#page-6-0)

3.1. Radioactive contamination of $PbWO_4$

The following conditions were accepted for the calculations: the CdWO₄ crystal (\varnothing 5 \times 5 cm) with the energy resolution (FWHM) 4% at 2.8 MeV is placed in the center of PbWO₄ scintillation detector (\varnothing 45 \times 45 cm), contaminated by ²³²Th and ²³⁸U at the level of 10^{-12} g/g. 7.61 \times 10^6 decays of ²⁰⁸Tl inside the PbWO₄ detector were simulated. It corresponds to exposure of $\approx 250 \text{ kg} \times \text{yr}$ with the $CdWO₄$ detector. The calculated energy spectrum of the CdWO4 detector, if no coincidence would be taken into account ($PbWO₄$ works as a passive shield), is shown in [Fig. 5\(](#page-4-0)a). The anticoincidence energy spectrum (the energy threshold of $PbWO₄$ detector was taken to be equal 0.5 MeV) is presented in [Fig. 5](#page-4-0)(b). There are only two events in the energy interval of $0v2\beta$ peak of ^{116}Cd (2.7–2.9 MeV), which corresponds to the background counting rate 4×10^{-5} counts/(yr keV kg) from the ²³²Th contamination in PbWO4.

The contamination of $PbWO_4$ crystals by ²²⁶Ra is even less dangerous. The Monte Carlo calculations show that no events above the energy of 2 MeV will be registered in the CdWO₄ detector during $\approx 250 \text{ kg} \times \text{yr}$ of exposure.

Fig. 5. The Monte Carlo simulated (a) response function of 116 CdWO₄ detector $(250 \text{ kg} \times \text{yr of exposure})$ to decays of ²⁰⁸Tl inside shielding $PbWO₄$ crystals (see text). (b) The same as (a) but in anticoincidence with the PbWO₄ detector. Also the 0v2 β peak of ¹¹⁶Cd with $T_{1/2} = 10^{25}$ yr, and two neutrino 2 β distribution $(T_{1/2}=2.9 \times 10^{19} \text{ yr})$ are shown.

3.2. External γ rays from copper and PMTs

Only 232Th contaminations in copper shield and PMT's were taken into account (the contribution from 238 U was found to be negligible) to estimate background in the vicinity of an expected 116 Cd 2 β decay peak. The following conditions were taken for the calculations: 32 CdWO_4 crystals (\varnothing 5 \times 5 cm) are surrounded by PbWO₄ scintillators $(70 \times 70 \times 70 \text{ cm})$. A copper shield of 5 cm thick surrounds the PWO assembly. The copper is contaminated by ²³²Th at the level of 10^{-11} g/g. It should be noted such a level of radiopurity was reported in Ref. [\[30\]](#page-6-0). The CdWO4 crystals are viewed through $PbWO₄$ light guides of 33 cm length by PMT with thorium contamination at the level of 2.5×10^{-7} g/g (PMT made of low background glass, see Ref. [\[31\]\)](#page-6-0), which corresponds to 232 Th activity ≈ 0.2 Bq/PMT. The Monte Carlo simulation by GEANT4 gives 13 counts in the 2615 keV peak from copper and 3 from PMT during ≈ 10 yr of experiment. It results in ≈ 0.5 counts in the expected peak (2.7–2.9 MeV) from $0\nu2\beta$ decay of 116 Cd.

3.3. Cosmogenic activation of $PbWO₄$ crystals

The cosmogenic activation of lead tungstate was calculated with the help of the COSMO code [\[32\].](#page-6-0) PbWO4 crystals was supposed to be produced during 30 days on the ground level and stored underground during 1 yr. Isotopes were selected from the full list of 175 radionuclides by their decay rate after cooling (more than 10^{-3} decays/day/kg) and by their energy release (near 3 MeV). The most dangerous cosmogenic isotopes are listed in [Table 3](#page-5-0).

The background of $CdWO₄$ detector caused by cosmogenic activation of $PbWO₄$ crystals was calculated with the help of the GEANT4 code. We suppose 0.5 MeV energy threshold of $PbWO₄$ active shield, like for estimation of thorium- and uranium-induced background. It gives \approx 0.16 counts from ⁶⁸Ga, \approx 0.5 from ⁸⁸Y and ⁸⁸Zr, \approx 0.26 from $106m$ Ag in 25 kg CdWO₄ detector during ≈ 10 yr of measurements in the energy region of interest $(2.7-2.9 \text{ MeV})$. The contribution from 106 Ru is less than 0.06 counts. Total cosmogenic background from $PbWO₄$ is expected to be only ≈ 0.9 counts in the energy interval of 116 Cd 0v2 β decay peak.

4. Discussion

The response functions of a detector with enriched ¹¹⁶CdWO₄ crystals (\approx 250 kg \times yr of exposure) for two neutrino $(T_{1/2}=2.9 \times 10^{19} \text{ yr}$ [\[5\]](#page-5-0)) and neutrinoless 2β decay of $116\overline{Cd}$ with half-life 10^{25} yr are presented in Fig. 5(b). Sensitivity of the experiment to neutrinoless 2β decay of ¹¹⁶Cd is at the level of lim $T_{1/2} \approx 10^{26}$ yr (which corresponds to the limit on neutrino mass of $\approx 0.07 \text{ eV}$ [\[33\]\)](#page-6-0). It is evident that the 0v2 β decay with $T_{1/2} \approx 10^{25}$ yr (neutrino mass ≈ 0.2 eV) would be certainly observed at this level of sensitivity.

The size of $PbWO_4$ active shield¹ in a setup could be equal approximately to $70 \times 70 \times 70$ cm. Thirty two enriched ¹¹⁶CdWO₄ crystals \varnothing 5 × 5 cm are viewed by 3 in. PMT through logarithmic-spiral PbWO₄ crystals of 33 cm length. $PbWO₄$ as light guide has an advantage in comparison with plastic or quartz. Because of the high index of refraction (2.2), a logarithmic-spiral-type light guide can be made ≈ 60 mm in diameter, that allows to use 3 in. PMT (which typically have lower mass, better energy resolution and lower noise) instead of 5 in. PMT. Assuming \approx 5 cm of passive copper, \approx 50 cm of lead, and \approx 50 cm polyethylene shield, dimensions of the setup are much more compact $(2.8 \times 2.8 \times 3.1 \text{ m})$ if to compare with "water shield" apparatus ($\approx \emptyset$ 11 \times 10 m) proposed in Ref. [\[12\].](#page-5-0)

To get such an impressive result, the problem of lowradioactive PbWO₄ crystals production should be solved. In particular, content of ^{210}Pb has to be decreased: high counting rate (and, thus, big number of random coincidences) in $^{210}Pb-^{210}Bi-^{210}Po$ decays, observed in the current measurements, creates a problem for performing the time–amplitude analysis of events to search for the specific decay chains. It is well known that the freshly smelted lead is contaminated by $210Pb$ at the level of hundreds Bq/kg [\[34\],](#page-6-0) while its contamination by uranium and thorium is substantially less [\[35\]](#page-6-0). As the first step, we

¹It should be stressed that CdWO₄ crystals, successfully applied in the Solotvina experiment [\[5\]](#page-5-0), can be also used as active shield detector.

Initial isotope and reaction	$T_{1/2}$	Energy release (keV)	Initial decay rate after 1 yr storing underground (decays/day/kg)	Number of decays during next 1 yr (decays/yr/kg)
68 Ge \rightarrow 68 Ga \rightarrow ^{68}Zn	271 d/68 m	106/2921	1.7×10^{-3}	0.4
${}^{88}\text{Y} \rightarrow {}^{88}\text{Sr}$	107d	3623	5.4×10^{-3}	0.76
${}^{88}\text{Zr} \rightarrow {}^{88}\text{Y} \rightarrow {}^{88}\text{Sr}$	83 d/107 d	673/3623	2×10^{-3}	0.23
$106 \text{Ru} \rightarrow 106 \text{Rh} \rightarrow 106 \text{Pd}$	374 d/30 s	39/3541	4.7×10^{-3}	1.2
110m Ag \rightarrow 110 Cd	250d	2892	1.6×10^{-2}	3.7

Table 3 Cosmogenic activity in $PbWO₄$ scintillators calculated with the help of the COSMO code (see text)

intend to grow $PbWO₄$ crystals from archaeological lead aiming to obtain $PbWO₄$ crystals less contaminated by ^{210}Pb ² As the next step, we foresee to estimate radioactive contamination of $PbWO₄$ crystals in low-background measurements by using the time–amplitude and pulseshape (to select fast sequence of β and α decays from the 212 Bi $^{-212}$ Po chain) analyses. As it was demonstrated in the experiments with CdWO₄ scintillators, the sensitivities are at the level of a few μ Bq/kg for ²²⁸Th, ²²⁶Ra, and ²²⁷Ac [5].

The energy threshold of the shielding $PbWO₄$ detector of 0.5 MeV can be achieved even with undoped scintillators at room temperature (see [Fig. 1](#page-1-0)). However, as it was shown in Refs. [15,19], dopants like molybdenum and terbium can improve light yield of this scintillator, that allows to decrease the energy threshold of PbWO4-based active shield.

5. Conclusions

Scintillation properties of PbWO₄ crystal scintillators were studied. The energy resolution $FWHM = 36\%$ was obtained for the 662 keV γ line of ¹³⁷Cs at -18 °C. The α/β ratio was measured in the energy interval 2–5.3 MeV. The dependence of the α/β ratio on energy of α particles was observed. Radioactive contamination of two $PbWO₄$ crystals was measured in the Solotvina Underground Laboratory. Both crystals are considerably polluted by ²¹⁰Po at the level of 50–80 Bq/kg. For ²²⁸Th (²³²Th family) and 226 Ra (238 U) activities only upper limits were set at the level of 13 and 10 mBq/kg, respectively.

The excellent energy resolution of $FWHM = 3.6\%$ was obtained for 2615 keV γ line of ²⁰⁸Tl with high-quality CdWO₄ crystal scintillator $10 \times 10 \times 10$ mm. The energy resolution of 3.9% (2615 keV γ line) and 86% of relative pulse amplitude was obtained for CdWO₄ scintillator viewed through PbWO4 crystal as light guide. We expect an improvement of the light collection and the energy resolution of $CdWO₄$ detector by using the logarithmicspiral $PbWO₄$ light guide.

Monte Carlo simulation and measurements demonstrate good abilities of PbWO₄ crystals to build 4π active shield for a sensitive 116 Cd double-beta decay experiment with $CdWO₄ scintillators. Furthermore, PbWO₄ crystals, if their$ radiopurity will be proved, can be used as light guide and active shield in low counting experiments with scintillation, cryogenic and semiconductor detectors.

Acknowledgements

The authors would like to thank Prof. P.G. Bizzeti and Prof. P. Maurenzig from the Dipartimento di Fisica, Universitá di Firenze and INFN (Firenze, Italy) for careful reading of the manuscript and useful comments and discussion.

References

- [1] Yu.G. Zdesenko, et al., in: Proceedings of the Second International Symposium on Underground Physics, Baksan Valley, USSR, August 17–19, 1987, Moscow, Nauka, 1988, p. 291.
- [2] F.A. Danevich, et al., Pis'ma Zh. Eksp. Teor. Fiz. 49 (1989) 417; F.A. Danevich, et al., JETP Lett. 49 (1989) 476; Yu.G. Zdesenko, J. Phys. G: Nucl. Part. Phys. 17 (1991) s243; F.A. Danevich, et al., Phys. Lett. B 344 (1995) 72; A.Sh. Georgadze, et al., Phys. Atom. Nucl. 58 (1995) 1093; F.A. Danevich, et al., Nucl. Phys. A 643 (1998) 317.
- [3] F.A. Danevich, et al., Phys. Rev. C 62 (2000) 045501;
- F.A. Danevich, et al., Nucl. Phys. A 717 (2003) 129.
- [4] F.A. Danevich, et al., Phys. Rev. C 67 (2003) 014310. [5] F.A. Danevich, et al., Phys. Rev. C 68 (2003) 035501.
-
- [6] F.A. Danevich, et al., Nucl. Phys. B (Proc. Suppl.) 138 (2005) 230. [7] H.V. Klapdor-Kleingrothaus, et al., Eur. Phys. J. A 12 (2001) 147.
- [8] C.E. Aalseth, et al., Phys. Rev. C 59 (1999) 2108;
- C.E. Aalseth, et al., Phys. Rev. D 65 (2002) 092007. [9] R. Arnold, et al., Pis'ma Zh. Eksp. Teor. Fiz. 80 (2004) 429;
- R. Arnold, et al., JETP Lett. 80 (2004) 377.
- [10] C. Arnaboldi, et al., Phys. Lett. B 557 (2003) 167; C. Arnaboldi, et al., Phys. Lett. B 587 (2004) 260.
- [11] R. Luescher, et al., Phys. Lett. B 434 (1998) 407; R. Bernabei, et al., Phys. Lett. B 546 (2002) 23.
- [12] G. Bellini, et al., Phys. Lett. B 493 (2000) 216; G. Bellini, et al., Eur. Phys. J. C 19 (2001) 43.
- [13] V.G. Barishevsky, et al., Nucl. Instr. and Meth. A 322 (1992) 231.
- [14] M. Kobayashi, et al., Nucl. Instr. and Meth. A 399 (1997) 261.
- [15] A. Annenkov, et al., Nucl. Instr. and Meth. A 450 (2000) 71.
- [16] M. Kobayashi, et al., Nucl. Instr. and Meth. A 465 (2001) 428.
- [17] M. Kobayashi, et al., Nucl. Instr. and Meth. A 484 (2002) 140.
- [18] A. Borisevich, et al., Nucl. Instr. and Meth. A 537 (2005) 101.
- [19] M. Kobayashi, et al., Nucl. Instr. and Meth. A 540 (2005) 381.
- [20] S. Baccaro, et al., Nucl. Instr. and Meth. A 385 (1997) 209.

²For instance, only limit ≤ 4 mBq/kg on ²¹⁰Pb contamination in lead tungstate crystal produced from Roman lead was reported in Ref. [\[36\].](#page-6-0)

- [21] A. Annenkov, et al., Nucl. Instr. and Meth. A 537 (2005) 173.
- [22] Yu.G. Zdesenko, et al., Nucl. Instr. and Meth. A 538 (2005) 657.
- [23] F.A. Danevich, et al., Nucl. Instr. and Meth. A 544 (2005) 553.
- [24] F.A. Danevich, et al., Nucl. Phys. A 694 (2001) 375.
- [25] A.Sh. Georgadze, et al., Instr. Exp. Techn. 39 (1996) 191.
- [26] S.Ph. Burachas, et al., Nucl. Instr. and Meth. A 369 (1996) 164.
- [27] F.A. Danevich, et al., Z. Phys. A 355 (1996) 433.
- [28] S. Agostinelli, (GEANT4 Collaboration), et al., Nucl. Instr. and Meth. A 506 (2003) 250; <http://geant4.web.cern.ch/geant4/.>
- [29] O.A. Ponkratenko, et al., Yad. Fiz. 63 (2000) 1355; O.A. Ponkratenko, et al., Phys. Atom. Nucl. 63 (2000) 1282.
- [30] C. Dorr, H.V. Klapdor-Kleingrothaus, Nucl. Instr. and Meth. A 513 (2003) 596.
- [31] Electron Tubes Limited, <http://www.electron-tubes.co.uk>
- [32] C.J. Martoff, P.D. Lewin, Comp. Phys. Comm. 72 (1992) 96.
- [33] A. Staudt, et al., Europhys. Lett. 13 (1990) 31.
- [34] A. Da Silva, et al., Nucl. Instr. and Meth. A 364 (1995) 578.
- [35] R.L. Brodzinski, et al., Nucl. Instr. and Meth. A 239 (1985) 207.
- [36] A. Alessandrello, et al., Nucl. Instr. and Meth. A 409 (1998) 451.