

Available online at www.sciencedirect.com

Nuclear Physics B (Proc. Suppl.) 138 (2005) 230–232

www.elsevierphysics.com

Double β decay of ¹¹⁶Cd. Final results of the Solotvina experiment and CAMEO project.

F.A. Danevich^a, P.G. Bizzeti^b, T.F. Fazzini^b, A.Sh. Georgadze^a, V.V. Kobychev^a, B.N. Kropivyansky^a, P.R. Maurenzig^b, A.S. Nikolaiko^a, V.I. Tretyak^a, S.Yu. Zdesenko^a, and Yu.G. Zdesenko^{a*}

^a Institute for Nuclear Research, MSP 03680 Kiev, Ukraine

^b Dipartimento di Fisica, Universitá di Firenze and INFN, 50019 Firenze, Italy

Final results of the 2β decay experiment, performed in the Solotvina Underground Laboratory with the help of low-background 116 CdWO₄ crystal scintillators, are presented. The revised half-life value of the two-neutrino 2β decay of ¹¹⁶Cd has been measured as $T_{1/2}^{2\nu} = 2.9_{-0.3}^{+0.4} \times 10^{19}$ yr, and the new half-life limit on the neutrinoless 2β decay of ¹¹⁶Cd has been established as $T_{1/2}^{0\nu} \ge 1.7$ (2.6) × 10²³ yr at 90% (68%) C.L. The latter corresponds to a restriction on the Majorana neutrino mass: $m_{\nu} \leq 1.7$ (1.4) eV at 90% (68%) C.L. The CAMEO project could further advance sensitivity of the ¹¹⁶Cd experiment to $m_{\nu} \leq 0.05$ eV.

Observations of neutrino oscillations manifest the non-zero neutrino mass and provide important motivation for highly sensitive experiments on neutrinoless double beta $(0\nu2\beta)$ decay. However, this process still remains unobserved, and only half-life limits for $0\nu2\beta$ mode were obtained (see, e.g., reviews $[1-3]$). One of the most sensitive 2β experiments has been performed in the Solotvina Underground Laboratory [4] by the Kiev-Firenze collaboration with the help of the enriched cadmium tungstate $(^{116}CdWO_4)$ crystal scintillators [5,6]. Here, we briefly describe the main results of this experiment and discuss the further advancement of its sensitivity.

The description of the set-up and its performance have been already published [5,6]. Four cadmium tungstate 116 CdWO₄ scintillators (enriched in 116 Cd to 83%) with a total mass of 330 g were used. They were surrounded by an active shield made of 15 CdWO_4 crystals of large volume with a total mass of 20.6 kg. The whole $CdWO₄$ array was situated within an additional active shield made of plastic scintillator $40\times40\times95$ cm, thus, a complete 4π active shield of the main $(^{116}CdWO₄)$ detector was provided. The outer passive shield consists of high-purity copper (3 -6 cm), lead $(22.5 - 30$ cm) and polyethylene (16 cm). For each event in the $116 \text{Cd} \text{WO}_4$ detector, the amplitude of a signal, its arrival time and pulse-shape (2048 channels with 50 ns width) were recorded. The energy resolution of the detector was FWHM $= 8.0\%$ at 2615 keV. Due to active and passive shields, and as a result of the time-amplitude [7,8] and pulse-shape analysis [9,10] of the data, the background rate of the $116 \text{Cd} \text{WO}_4$ detector in the energy region $2.5 - 3.2$ MeV ($Q_{\beta\beta}$ of ¹¹⁶Cd is 2.8 MeV) was reduced down to $0.037(10)$ counts/(yr·kg·keV) [5,6]. It is the lowest background rate which has ever been reached with crystal scintillators.

The background spectrum measured during 12649 h after set-up upgrading in 1999 (the energy resolution and pulse-shape discrimination ability of the detector were improved) is shown in Fig. 1. Fit of the data gives the half-life value of the $2\nu2\beta$ decay of 116 Cd:

$$
T_{1/2}^{2\nu} = 2.9 \pm 0.06 \text{(stat)}_{-0.3}^{+0.4} \text{(syst)} \times 10^{19} \text{ yr}.
$$

The main origins of the systematical uncertainties are possibly traces of the β active nuclides 234m Pa and ^{90}Y (daughter of ^{90}Sr) in the 116CdWO_4 crystals [6].

The experimental $2\nu2\beta$ Kurie plot (depicted in the inset of Fig. 1) is well described by the straight line in the 900 – 2500 keV energy region,

[∗]Corresponding author. E-mail: zdesenko@kinr.kiev.ua

^{0920-5632/\$ –} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.nuclphysbps.2004.11.056

Figure 1. Spectrum of $\gamma(\beta)$ events measured with $116 \text{Cd} \text{WO}_4$ detector (12649 h). Also shown are the most important model components: (a) the $2\nu2\beta$ spectrum of ¹¹⁶Cd; (b) external γ background caused by radioactive contamination of the PMTs; 40 K contamination of the (c) nonenriched and (d) enriched $CdWO₄$ scintillators. Solid line represents the fit of the data in the 860 $-2700 \text{ keV energy interval.}$ (Inset) The $2\nu2\beta$ decay Kurie plot and its fit.

and derived $Q_{\beta\beta}$ energy (2808±43 keV) is in accordance with the table value 2805(4) keV. The obtained $T_{1/2}^{2\nu}$ is in agreement with our prelimi-
name result [5] and with these measured earlier in nary result [5] and with those measured earlier in other experiments [7,11,12].

The part of the spectrum measured with the ¹¹⁶CdWO₄ detector during 14183 h $\{7.41 \times 10^{23}$ (nuclei of ${}^{116}Cd$) \times yr} is presented in Fig. 2. Since any indications on the peak of $0\nu2\beta$ decay is absent in the experimental data, we set the bound on the half-life for $0\nu2\beta$ decay of ¹¹⁶Cd:

 $T_{1/2}^{0\nu} \ge 1.7$ (2.6) × 10²³ yr at 90% (68%) C.L.

Using this limit and calculations [13], we derive restrictions on the Majorana neutrino mass and right-handed admixtures in the weak interaction: $m_\nu\,\leq\,1.9$ eV, $\eta\,\leq\,2.5\times10^{-8},\;\lambda\,\leq\,2.2\times10^{-6}$

Figure 2. Part of experimental spectrum of the ¹¹⁶CdWO₄, together with the $2\nu2\beta$ distribution of ¹¹⁶Cd. Also are presented the excluded with 90% C.L. distributions of 0ν M1, 0ν M2 and 0ν
decay with bulk Majoron emission with T^{M1} decay with bulk Majoron emission with $T_{1/2}^{M1} =$
 $T_{2/2}^{M2} = 2 \times 10^{20}$ 8×10^{21} yr, $T_{1/2}^{M2} = 8 \times 10^{20}$ yr, and $T_{1/2}^{bM} = 1.7 \times 10^{21}$ superinted by the inext the superiority 10^{21} yr, respectively. In the inset the expected peak from $0\nu2\beta$ decay with $T_{1/2} = 2 \times 10^{22}$ yr is shown.

at 90% C.L. Neglecting the right-handed contribution we get $m_{\nu} \leq 1.7$ (1.4) eV at 90% (68%) C.L., and on the basis of [12,14] the limit is $m_{\nu} \leq 1.5$ (1.2) eV. Besides, in accordance with ref. [15] the value of R-parity violating parameter of minimal SUSY standard model is restricted by our $T_{1/2}^{0\nu}$ bound to $\varepsilon \leq 7.0$ (6.3) × 10^{-4} at 90% (68%) C.L.

To obtain limits for $0\nu2\beta$ decay with emission of one (M1), two (M2) and bulk [16] Majoron(s), the spectrum was analyzed in the energy region $1.6 - 2.8$ MeV. Excluded with 90% C.L. distributions of $0\nu2\beta$ processes with Majoron emission are also shown in Fig. 2. In particular, $T_{1/2}^{M1} \geq 0.8$ (1.8) $\times 10^{22}$ yr at 90% (68%) C.L. Us-
ing this bound and saluplations [17], the effective ing this bound and calculations [17], the effective Majoron-neutrino coupling constant is restricted as $g_M \leq 8.1$ (5.4)×10⁻⁵, and on the basis of calculation [12,14] as $g_M \leq 4.6$ (3.1) × 10⁻⁵, which are among the strongest constraints reached in the direct 2β decay experiments [3]. It should be stressed that all these restrictions were obtained with small 116 CdWO₄ detectors (≈ 0.3 kg), in contrast with those for ⁷⁶Ge studies (\approx 10 kg of enriched HP ⁷⁶Ge detectors [18]).

Therefore, the Solotvina experiment demonstrates that CdWO⁴ crystals possess several unique properties required for a 2β decay experiment: low level of intrinsic radioactivity, good scintillation characteristics and pulse-shape discrimination ability, which allow one to reduce background effectively. But, to enhance the sensitivity to the neutrino mass bound to $m_{\nu} \leq 0.05$ eV, we have to increase the mass of enriched 116CdWO_4 detector and measuring time, to improve the energy resolution and to reduce the background of the detector further. Note that, for our $116 \text{Cd} \text{WO}_4$ detectors, the background in the 2.5–3.1 MeV energy interval is caused by the $2\nu2\beta$ decay of ¹¹⁶Cd (≈50%), internal ²³²Th contamination ($\approx 30\%$), and by the external γ rays from the PMTs $(\approx 20\%)$. Hence, the further purification of the 116 CdWO₄ scintillators and the improvement of their energy resolution could additionally reduce the background. Namely, the CAMEO project [19], which intends to use ≈ 100 kg of $116 \text{Cd} \text{WO}_4$ crystals placed in a large volume of high purity liquid, calls also for improvement of the energy resolution (FWHM) at 2.8 MeV to 4% and for background reduction by factor \approx 100. The required radioactive contamination of $116 \text{Cd} \text{WO}_4$ crystals has to be less than ≈10 μ Bq/kg, both for ²²⁸Th and ²²⁶Ra [19]. Actually, even already existing $CdWO₄$ crystals satisfy these requirements for ²²⁶Ra (< 4 μ Bq/kg) [6], but ²²⁸Th contamination varies in different crystals as $(3-39) \mu\text{Bq/kg}$ [6,20]. At the same time, the required energy resolution $FWHM =$ 4.3% at 2615 keV (^{232}Th) has been already measured with the CdWO₄ crystal \oslash 4 × 3 cm placed in a liquid [19].

To conclude, fulfilment of the CAMEO experiment has practically no technical risk, and it seems to be very realistic because developed technique with the 116 CdWO₄ crystal scintillators is very simple and reliable. As the first step, the CAMEO project is foreseen to produce ≈ 10 kg of $116 \text{Cd} \text{WO}_4$ crystals with required improved characteristics (radiopurity, energy resolution, etc.), which have been already obtained for several samples of CdWO⁴ scintillators. With such crystals, a half-life sensitivity $\approx 10^{25}$ yr (corresponding to neutrino mass ≈ 0.2 eV) could be reached during 5 yr of measurements.

REFERENCES

- 1. J.D. Vergados, Phys. Rep. 361 (2002) 1.
- 2. Yu. Zdesenko, Rev. Mod. Phys. 74 (2002) 663.
- 3. V.I. Tretyak and Yu.G. Zdesenko, At. Data Nucl. Data Tables 80 (2002) 83.
- 4. Yu.G. Zdesenko *et al.*, Proc. 2nd Int. Symp. Underground Phys., Baksan Valley, 1987 – Moscow, Nauka, 1988, p. 291.
- 5. F.A. Danevich *et al.*, Phys. Rev. C 62 (2000) 045501.
- 6. F.A. Danevich *et al.*, Phys. Rev. C 68 (2003) 035501.
- 7. F.A. Danevich *et al.*, Phys. Lett. B344 (1995) 72.
- 8. F.A. Danevich *et al.*, Nucl. Phys. A 694 (2001) 375.
- 9. T. Fazzini *et al.*, Nucl. Instrum. Meth. A 410 (1998) 213.
- 10. F.A. Danevich *et al.*, Phys. Rev. C 67 (2003) 014310.
- 11. H. Ejiri *et al.*, J. Phys. Soc. Japan 64 (1995) 339.
- 12. R. Arnold *et al.*, Z. Phys. C 72 (1996) 239.
- 13. A. Staudt *et al.*,Europhys. Lett. 13 (1990) 31.
- 14. J. Suhonen and O. Civitarese, Phys. Rept. 300 (1998) 123.
- 15. M. Hirsch *et al.*, Phys. Rev. D 53 (1996) 1329.
- 16. R.N. Mohapatra *et al.*, Phys. Lett. B 491 (2000) 143.
- 17. M. Hirsch *et al.*, Phys. Lett. B 372 (1996) 8.
- 18. H.V. Klapdor-Kleingrothaus *et al.*, Eur. Phys. J. A 12 (2001) 147; C.E. Aalseth *et al.*, Phys. Rev. D 65 (2002) 092007.
- 19. G. Bellini *et al.*, Phys. Lett. B 493 (2000) 216; Eur. Phys. J. C 19 (2001) 43.
- 20. S.Ph. Burachas *et al.*, Nucl. Instr. Meth. A 369 (1996) 164; F.A. Danevich *et al.*, Z. Phys. A 355 (1996) 433.