ELSEVIER

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research A 538 (2005) 657-667

www.elsevier.com/locate/nima

Scintillation properties and radioactive contamination of CaWO₄ crystal scintillators

Yu.G. Zdesenko^{a,}, F.T. Avignone III^b, V.B. Brudanin^c, F.A. Danevich^{a,}, S.S. Nagorny^a, I.M. Solsky^d, V.I. Tretyak^a

^aInstitute for Nuclear Research, Prospekt Nauki 47, MSP 03680 Kiev, Ukraine ^bUniversity of South Carolina, Columbia, South Carolina 29208, USA ^cJoint Institute for Nuclear Research, 141980 Dubna, Russia ^dInstitute for Materials, 79031 Lviv, Ukraine

Received 11 March 2004; received in revised form 2 September 2004; accepted 16 September 2004 Available online 30 October 2004

Abstract

Energy resolution, α/β ratio and the pulse-shape discrimination ability of the CaWO₄ crystal scintillators were studied. The radioactive contamination and background of the crystals were measured in the Solotvina Underground Laboratory. Despite a rather high level of radioactive impurities, the background rate of the CaWO₄ detector in the energy window of the ⁴⁸Ca neutrinoless 2 β decay (3.6–5.4 MeV) was reduced to 0.07 counts/(yr keV kg). The indication for α decay of ¹⁸⁰W (Phys. Rev. 67 (2003) 014310) was confirmed (the measured half-life is $T_{1/2} = 1.0^{+0.7}_{-0.3} \times 10^{18}$ yr). © 2004 Elsevier B.V. All rights reserved.

PACS: 29.40.Mc; 23.60. + e; 23.40.-s; 95.35. + d

Keywords: Scintillation detector; CaWO4 crystals; Alpha decay; Double beta decay; Dark matter

1. Introduction

The energy resolution, pulse-shape discrimination ability, and radioactive purity of the detectors are very important in experiments aiming to search for the neutrinoless double beta $(0v2\beta)$ decay of atomic nuclei (see reviews [1-4]), and to search for weakly interacting massive particles (so-called WIMPs)¹ as a possible component of the dark matter in the Universe [5].

^{*}Corresponding author. Tel.: + 380 44 265 1111; fax: + 380 44 265 4463.

E-mail address: danevich@kinr.kiev.ua (F.A. Danevich). *Deceased

¹Weakly interacting massive particles (WIMPs)—in particular the neutralino, predicted by the minimal supersymmetric extension of the SM—are considered as possible component of the dark matter in the Universe. It is assumed that WIMPs interact with matter through scattering on nuclei, and hence, produce low energy nuclear recoils. At present the most

^{0168-9002/\$ -} see front matter C 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.nima.2004.09.030

658

Because the theoretical $0v2\beta$ decay rate strongly depends on the $Q_{\beta\beta}$ -value, roughly as $Q_{\beta\beta}^5$ [6], the development of new low-background detectors, containing potentially 2β decaying nuclides with a $Q_{\beta\beta}$ energy release as large as possible, is very important. As ⁴⁸Ca has the highest $Q_{\beta\beta}$ energy among 35 double β^- decay candidates available in nature, a detector containing Ca nuclei would be of considerable interest for the future high sensitivity 2β decay experiments. However, apart from a reasonable content of candidate nuclei, a detector for 2β study should satisfy certain demands on its radiopurity, because the latter governs the level of residual detector background. In addition, the energy resolution of the detector is extremely important. Most important, good energy resolution minimizes the irreducible background produced by $2v2\beta$ decay events. Likewise, the role of the detector's energy resolution is even more crucial for the discovery of $0v2\beta$ decay. Indeed, this process manifests itself through a peak at the $Q_{\beta\beta}$ energy, the width of which is determined by the energy resolution of the detector. Hence, the latter should be sufficient to discriminate this peak from background and to recognize the effect [7]. One possible detector for the 2β decay study of ⁴⁸Ca is the calcium tungstate (CaWO₄) crystal scintillator, the physical properties of which are similar to those of the CdWO₄ scintillator already applied in a 2β experiment with ¹¹⁶Cd [8].

Moreover, in Refs. [9,10] CaWO₄ crystals are discussed as very promising detectors for dark matter particle searches. However, because of an extremely low counting rate expected from WIMP scattering by nuclei, such measurements require detectors with extremely low levels of background [5].

The aim of this work is the study of the scintillation properties and radioactive contaminations of $CaWO_4$ crystals and, on this basis to discuss the possible development of detectors for double beta decay and dark matter experiments.

2. Measurements and results

2.1. Scintillation properties of CaWO₄ crystals

CaWO₄ single crystals were discovered as being scintillators more than fifty years ago [11,12]. Beard and Kelly used a small CaWO₄ crystal in a low background experiment to search for alpha activity in natural tungsten [13]. The main properties of the CaWO₄ scintillators are presented in Table 1, where the characteristics of cadmium tungstate (CdWO₄) crystals are given for comparison. Both crystals are chemically resistant, while CaWO₄ possesses better mechanical properties.

For our studies, three clear colorless CaWO₄ crystals $(20 \text{ mm} \times 20 \text{ mm} \times 10 \text{ mm})$ $40\,\mathrm{mm}$ × $34 \text{ mm} \times 23 \text{ mm}$, and $\oslash 40 \text{ mm} \times 39 \text{ mm}$) were grown by the Czochralski method. These crystals, wrapped in PTFE reflector tape, were optically coupled to 3 in. Philips XP2412 photomultipliers (PMTs). The event-by-event data acquisition records information on the amplitude (energy), arrival time and pulse shape of the signals. For the latter a transient digitizer based on a fast 12 bit ADC (AD9022) was used with a sampling frequency of 20 MHz. Pulse shapes of events in the chosen energy interval (usually, higher than $\approx 180 \text{ keV}$) were recorded in 2048 channels with 50 ns channel's width.

The linearity, energy scale and resolution of the detector were measured with γ -ray sources of ⁶⁰Co, ¹³⁷Cs, ²⁰⁷Bi, ²³²Th and ²⁴¹Am in the energy range

Table 1 Properties of CaWO₄ and CdWO₄ crystal scintillators

Properties	CaWO ₄	CdWO ₄
Density (g/cm ³)	6.1	8.0
Melting point (°C)	1570-1650	1325
Structural type	Sheelite	Wolframite
Cleavage plane	Weak (101)	Marked (010)
Hardness (Mohs)	4.5–5	4-4.5
Wavelength of emission maximum (nm)	420–425	480
Refractive index	1.94	2.2-2.3
Effective average decay time $(\mu s)^a$	8	13
Relative light output ^a	90%	100%

^aFor γ rays at 20 °C.

⁽footnote continued)

sensitive experiments for WIMP searches use a range of detectors: Ge semiconductor detectors, low temperature bolometers, and scintillators [5].

Fig. 1. Energy spectra of the ¹³⁷Cs and ⁶⁰Co gamma sources measured with the CaWO₄ scintillation crystal ($\oslash 40 \text{ mm} \times 39 \text{ mm}$) in two detector arrangements (with different conditions of the light collection): (a) standard, where the crystal, wrapped in PTFE reflector tape, was optically coupled to the PMT; (b) the CaWO₄ crystal was located in a liquid and viewed by two distant PMTs. (c) The same as (b) but with the ²³²Th gamma source.

of 60–2615 keV. Fig. 1(a) shows the energy spectra of the ¹³⁷Cs and ⁶⁰Co γ -rays measured with a crystal of dimensions $\oslash 40 \text{ mm} \times 39 \text{ mm}$. For example, the energy resolution, FWHM = 7.8% at 662 keV, is comparable with that of NaI(Tl) scintillators.

Moreover, a further improvement of the energy resolution was achieved by placing the CaWO₄ crystal (\oslash 40 mm × 39 mm) in a liquid (silicone oil). The crystal was fixed in the center of a teflon container with inner diameter 70 mm, which was coupled on opposite sides with two PMTs Philips XP2412. The container was filled up with pure and transparent silicon oil (refractive index ≈1.5). The spectra measured with the ⁶⁰Co, ¹³⁷Cs and ²³²Th γ sources are shown in Fig. 1(b) and (c). By comparing the spectra in Fig. 1(a) and (b), one

finds that an increase in light collection of $\approx 20\%$ was reached with the CaWO₄ crystal placed in the liquid. It resulted in an improvement of the energy resolution over the entire energy region: the measured FWHM resolution is equal to 7.2%, 4.7% and 3.8% for 662, 1333 and 2615 keV γ -ray lines, respectively (see Fig. 1(b) and (c)).

The detector response to α particles in the energy range of 0.5–5.3 MeV was measured with the help of a collimated beam of α particles² from an ²⁴¹Am source and using various sets of the thin

²The CaWO₄ crystals were irradiated in the directions perpendicular to main crystal planes with the aim to check a possible dependence of the α signal on the direction of irradiation. While earlier such a dependence has been found for CdWO₄ [14], we did not observe it for the CaWO₄ crystals.

Fig. 2. The energy dependence of the α/β ratio measured with the 40 mm × 34 mm × 23 mm CaWO₄ scintillator. The crystal was irradiated by α particles (²⁴¹Am) through absorbers to obtain energies in the 0.5–5.3 MeV range (circles). In addition, the α peaks of ¹⁴⁷Sm, as well as ²³²Th, ²³⁸U, and ²³⁵U daughters (triangles) were selected from the background data with the help of pulse-shape and time-amplitude analyses (see text). Solid lines represent the best fit for the α/β ratio in two energy intervals: 0.5–2 MeV and 2–5.3 MeV.

mylar film absorbers. The energies of the α particles after the absorbers were measured with a surface-barrier detector (see for details [14]). In addition, α peaks of the ¹⁴⁷Sm and nuclides from the ²³²Th, ²³⁵U and ²³⁸U chains, present in trace amounts in the CaWO₄ crystal $(40 \text{ mm} \times$ $34 \,\mathrm{mm} \times 23 \,\mathrm{mm}$), were used to extend the energy interval up to $\simeq 8$ MeV. These peaks were selected with the help of pulse-shape and time-amplitude analyses of the data obtained in the low background measurements with the CaWO₄ crystal (see section 2.3). The energy dependence of the α/β ratio is presented in Fig. 2. Within the energy interval 0.5–2 MeV, the measured α/β ratio³decreases with increasing energy as $\alpha/\beta = 0.21(2) - 0.21(2)$ $0.023(14)E_{\alpha}$, while above 2 MeV it increases as $\alpha/\beta = 0.129(12) + 0.021(3)E_{\alpha}$ (E_{α} is in MeV). The quenching of the scintillation light caused by α particles in comparison with electrons is due to the

Fig. 3. Shapes of scintillation pulses in the CaWO₄ crystals for γ rays and α particles (each was obtained as the average of 4000 pulses) and their fit by three exponential functions with decay constants $\approx 0.3 \,\mu s$, $\approx 4 \,\mu s$ and $\approx 9 \,\mu s$.

higher ionization density of α particles [15]. This behavior of the α/β ratio can then be explained by the energy dependence of the ionization density of α particles.

2.2. Pulse-shape analysis

The time characteristics of CaWO₄ scintillators were studied as described in [14,16] with the help of a transient digitizer based on a 12 bit ADC operated at a sampling frequency of 20 MHz. Shapes (time dependence) of the light pulses produced by α particles and γ rays in CaWO₄ scintillator are depicted in Fig. 3 (shown is the average of 4000 shapes). These shapes were fit with the function: $f(t) = \sum A_i / (\tau_i - \tau_0) \times (e^{-t/\tau_i} - \tau_0)$ e^{-t/τ_0}), where A_i are intensities (in percentage of the total intensity), $\tau_0 \approx 0.2 \,\mu s$ is the integration constant of the electronics, and τ_i are decay constants for different light emission components. The best fit was achieved with three⁴ decay components ($\tau_i \approx 0.3$, ≈ 4 and $\approx 9 \,\mu s$) with different intensities for γ rays and α particles (see Table 2).

³The " α/β ratio" is defined as the ratio of the α peak position measured in the γ energy scale to the energy of the α particles. As γ quanta interact with the detector via β particles we use the more convenient term " α/β ratio".

⁴In principle, a reasonable fit has also been obtained by using only two components: $\approx 2 \,\mu s$ and $\approx 9 \,\mu s$. However, in order to reproduce the shape at the beginning of the pulses one more component ($\approx 0.3 \,\mu s$) must be added.

Table 2

Decay time of CaWO₄ scintillators for γ quanta and α particles at 20 °C. The decay constants and their intensities (in percentage of the total intensity) are denoted as τ_i and A_i , respectively

Type of irradiation	Decay constants, µs		
	$\tau_1 \; (A_1)$	$ au_2$ (A ₂)	τ_{3} (A ₃)
γ rays	0.3 (3%)	4.4 (15%)	9.0 (82%)
α particles	0.3 (6%)	3.2 (18%)	8.8 (76%)

This difference allows one to discriminate $\gamma(\beta)$ events from those of α particles. For this the optimal filter method was used (for the first time proposed in [17]), which previously was successfully applied to CdWO₄ scintillators [16]. To obtain the numerical characteristics of CaWO₄ signals, called the shape indicator (SI), each experimental pulse, f(t), was processed with the following digital filter: $SI = \sum f(t_k) \times f(t_k)$ $P(t_k) / \sum f(t_k)$, where the sum is over time channels k, starting from the origin of pulse and up to 75 µs, and $f(t_k)$ is the digitized amplitude (at the time t_k) of a given signal. The weight function P(t) is defined as: $P(t) = {\overline{f}_{\alpha}(t) - \overline{f}_{\gamma}(t)}/{\overline{f}_{\alpha}(t) + \overline{f}_{\gamma}(t)}$ $\overline{f}_{v}(t)$, where $\overline{f}_{\alpha}(t)$ and $\overline{f}_{v}(t)$ are the reference pulse shapes for α particles and γ quanta, respectively, resulting from the average of a large number of experimental pulse shapes.

As an example, the SI distributions measured with the CaWO₄ scintillator with α particles $(E_{\alpha} \approx 5.3 \text{ MeV})$ and γ quanta ($\approx 1.2 \text{ MeV}$) are shown in Fig. 4(a), from which one can see that by using this approach, a distinct discrimination between α particles and γ rays (β particles) was achieved. As a measure of discrimination ability, the following relation can be used: $M_{\text{PSA}} = |\text{SI}_{\alpha} - \text{SI}_{\gamma}| / \sqrt{\sigma_{\alpha}^2 + \sigma_{\gamma}^2}$, where SI_{α} and SI_{γ} are mean SIvalues for α particles and γ quanta distributions (which are well described by Gaussian functions), where σ_{α} and σ_{γ} are the corresponding standard deviations. For the distributions presented in Fig. 4(a), $M_{\text{PSA}} = 5.9$.

The energy dependence of the SI was studied in the energy region 1-5.3 MeV for alpha particles (see Fig. 4(b)) and 0.1-2.6 MeV for gamma

Fig. 4. (a) The shape indicator (see text) distributions measured with the CaWO₄ detectors with the α particles ($E_{\alpha} = 5.3$ MeV) and γ quanta (\approx 1.2 MeV). (b) The energy dependence of the shape indicator measured with the CaWO₄ crystal scintillator for α particles.

quanta. Like the α/β ratio, the energy dependence of the shape indicator for α particles (see Fig. 4(b)) can be explained by the dependence of the ionization density on the energy (note that the higher SI value corresponds to the shorter decay time of scintillation pulses). The shape indicator measured with CaWO₄ crystals for α particles does not depend on the direction of α irradiation relative to the crystal axes. Similarly, no dependence of the SI on the γ quanta energy (from 0.1 to 2.6 MeV) was observed.

2.3. Radioactive contamination

The radioactive contamination of the crystals was measured in the low background set-up installed in the Solotvina Underground Laboratory built in a salt mine 430 m underground ($\simeq 1000 \text{ m}$ of water equivalent) [18]. In the set-up a CaWO₄ crystal scintillator (40 mm × 34 mm × 23 mm) was coupled to a special low-radioactive 5 in.-photomultiplier tube (EMI D724KFLB) with a quartz light-guide $\oslash 10 \text{ cm} \times 33 \text{ cm}$. The

662

detector was surrounded by a passive shield made of teflon (thickness of 3-5 cm), plexiglass (6-13 cm), high purity (HP) copper (3-6 cm), lead (15 cm) and polyethylene (8 cm). Two plastic scintillators $(120 \text{ cm} \times 130 \text{ cm} \times 3 \text{ cm})$ were installed above the passive shield and used as a cosmic muon veto. For each event in the detector, the amplitude of the signal and its arrival time were recorded. In addition the CaWO₄ scintillation pulses were digitized with a 20 MHz sampling frequency over $\approx 100 \,\mu s$ time interval. The energy resolution of the detector was determined by calibrations with 60 Co, 137 Cs, 207 Bi and 232 Th γ sources. In the energy range 240–2615 keV, it can by the function: $FWHM_{\nu}(keV) =$ be fit $-3 + \sqrt{6.9E_{\gamma}}$, where E_{γ} is the energy of γ -ray in keV. Routine calibrations were carried out weekly with 207 Bi and 232 Th γ sources.

The energy spectrum of the CaWO₄ detector, measured during 1734 h in the low background apparatus, is presented in Fig. 5, where the data obtained with the CdWO₄ scintillator in the same set-up are shown for comparison. Both spectra are normalized by their measuring times and their corresponding detector masses. It is clear from this comparison, that the radioactive contamination of the CaWO₄ crystal is much higher than that of the CdWO₄. With the aim of recognizing the origins of

Fig. 5. Energy spectra of CaWO₄ (189 g, 1734 h, dots), and CdWO₄ (448 g, 37 h, histogram) scintillation crystals measured in the same low background set-up. The CaWO₄ detector is considerably contaminated by radionuclides from the U–Th chains. Beta decay of ¹¹³Cd ($Q_{\beta} = 316$ keV, $T_{1/2} = 7.7 \times 10^{15}$ yr) dominates in the low energy part of the CdWO₄ spectrum.

Fig. 6. Background α spectrum of the CaWO₄ detector (189 g, 1734 h) selected with the help of the pulse-shape analysis. (Inset a) The energy distribution of α particles is well reproduced by the model which includes α decays of nuclides from ²³²Th and ²³⁸U families. (Inset b) Low energy part of the α spectrum. The peculiarity on the right of the ¹⁴⁷Sm peak can be attributed to the α decay of ¹⁸⁰W with $T_{1/2} = 1.0 \times 10^{18}$ yr.

these contaminations, the data accumulated with the CaWO₄ crystal were separated into α and β spectra with the help of the pulse-shape discrimination technique.

The α spectrum, which is depicted in Fig. 6, was analyzed. The total alpha activity in the calcium tungstate crystal is ≈ 0.4 Bq/kg. The intense clear peak at the energy of 1.28 MeV is attributed to intrinsic ²¹⁰Po (daughter of ²¹⁰Pb from the ²³⁸U family) with an activity of 0.291(5) Bq/kg. Apparently, the equilibrium of the uranium chain in the crystal was broken during crystal production, because the peak of ²³⁸U (see inset (a) in Fig. 6) corresponds to a much lower activity of 14.0(5) mBq/kg.

The alpha peaks of the uranium daughters ²³⁴U, ²³⁰Th, ²²⁶Ra are not resolved (their Q_{α} values are very close), however, the area of the total peak (at ≈ 1.1 MeV) is in satisfactory agreement with the activity of ²³⁸U and ²²⁶Ra. Another member of the family, ²²²Rn, is not separated from ²¹⁰Po (the expected energy of the α peak is ≈ 1.34 MeV in γ ray energy), while the ²¹⁸Po peak is well resolved. The activity of ²²⁶Ra determined on the basis of the ²¹⁸Po peak area is 5.9(8) mBq/kg.

In the low energy part of the alpha spectrum (inset (b) in Fig. 6) the peak at ≈ 0.8 MeV can be attributed to 232 Th with an activity of

0.69(10) mBq/kg. A weak alpha peak with the γ -equivalent energy of 395(2) keV (corresponds to the energy of α particles, 2243(9) keV) can be explained by traces of ¹⁴⁷Sm ($E_{\alpha} = 2247$ keV, $T_{1/2} = 1.06 \times 10^{11}$ yr, the natural isotopic abundance of which is 15.0% [19]) with an activity 0.49(4) mBq/kg.⁵

In addition, the raw background data (Fig. 5) were analyzed using the time-amplitude method, where the energy and arrival time of each event were used for the selection of the decay chains of the ²³²Th, ²³⁵U and ²³⁸U families.⁶ For instance, the following sequence of α decays from the ²³²Th family was searched for and observed: ²²⁰Rn $(Q_{\alpha} = 6.41 \text{ MeV}, T_{1/2} = 55.6 \text{ s}) \rightarrow^{216} \text{Po} \quad (Q_{\alpha} = 6.91 \text{ MeV}, T_{1/2} = 0.145 \text{ s}) \rightarrow^{212} \text{Pb}$ (which are in equilibrium with ²²⁸Th). Since the energy of α particles from the 220 Rn decay corresponds to \simeq 1.6 MeV in γ -ray energy in the CaWO₄ detector, events in the energy region 1.4-2.2 MeV were used as triggers. Then all events (within 1.4–2.2 MeV) following the triggers in the time interval 20-600 ms (containing 85.2% of ²¹⁶Po decays) were selected. The obtained α peaks (see Fig. 7)—the α nature of events was confirmed by the pulse-shape analysis described above—as well as the distributions of the time intervals between events are in a good agreement with those expected for the α -decays of the 220 Rn \rightarrow 216 Po \rightarrow 212 Pb chain [20]. On this basis, the activity of ²²⁸Th in the CaWO₄ crystal was calculated as 0.6(2) mBq/kg, which is in good ²³²Th agreement with the activity of (0.69(10) mBq/kg) determined from the α spectrum. The α peak with energy $E_{\alpha} \approx 7.3$ MeV, which is present in the energy distribution of the second event in Fig. 7, can be attributed to ²¹⁵Po $(Q_{\alpha} = 7.39 \text{ MeV}, T_{1/2} = 1.78 \text{ ms})$ in the ²³⁵U chain. The corresponding activity of ²²⁷Ac in the crystal is 1.6(3) mBq/kg. Again we have to conclude that the equilibrium of the ²³⁵U chain in the crystal is also broken. Indeed, because the uranium isotopes ²³⁸U,

Fig. 7. Alpha peaks of ²²⁰Rn and ²¹⁶Po selected by the timeamplitude analysis from the data accumulated with the CaWO₄ detector. (Inset) The time distribution between the first and second events together with an exponential fit. The obtained half-life of ²¹⁶Po (0.17 ± 0.04 s) agrees with the table value (0.145 ± 0.002) s [20].

 234 U and 235 U cannot be chemically separated, their activities have to be in the ratio 1:1:0.046, which leads to expected activity of 235 U and its daughters of 0.64(2) mBq/kg.

Similarly for the analysis of the ²²⁶Ra chain (²³⁸U chain) the following sequence of β and α decays was used: ²¹⁴Bi $(Q_{\beta} = 3.27 \text{ MeV}) \rightarrow ^{214}\text{Po} (Q_{\alpha} = 7.83 \text{ MeV}, T_{1/2} = 164 \,\mu\text{s}) \rightarrow ^{210}\text{Pb}$. For the first event, the lower energy threshold was set at 0.18 MeV, while for the second decay the energy window 1.6–2.4 MeV was chosen. A time interval of 90–500 μ s (56% of ²¹⁴Po decays) was used. The obtained spectra (Fig. 8) lead to a ²²⁶Ra activity in the CaWO₄ crystal of 5.6(5) mBq/kg, which agrees with the value derived on the basis of the ²¹⁸Po peak in the α spectrum.

In the beta spectrum of ²¹⁴Bi (Fig. 8) there is a peak at ≈ 1.8 MeV which can be attributed to the α decay of ²¹⁹Rn (²³⁵U family, $E_{\alpha} = 6.82$ MeV, $T_{1/2} = 3.96$ s). It was shown by pulse-shape analysis that this peak consists of α events. The alpha peak of ²¹⁵Po ($E_{\alpha} = 7.39$ MeV) is not resolved from that of ²¹⁴Po. The corresponding activity of ²²⁷Ac in the crystal is 1.6(3) mBq/kg;

⁵The presence of ¹⁴⁷Sm in a CaWO₄ crystal (at a level of $\approx 6 \text{ mBq/kg}$) was also observed in Ref. [10], where this crystal was used as a low temperature bolometer with very good energy resolution for alpha particles.

⁶The technique of time-amplitude analysis of background data to recognize the presence of the short-living chains from ²³²Th, ²³⁵U and ²³⁸U families is described in Refs. [21,22].

Fig. 8. The energy distributions for the fast sequence of the β (²¹⁴Bi) and α (²¹⁴Po) decays selected from the background data by the time-amplitude analysis. The peak in the continuous spectrum corresponds to the α peak of ²¹⁹Rn ($E_{\alpha} \approx 6.82$ MeV) from the ²³⁵U chain. (Inset) The time distribution between the first and second events together with an exponential fit (the contribution from ²¹⁵Po was taken into account). The obtained half-life of ²¹⁴Po (120^{+30}_{-50} µs) is in agreement with the table value (164.3 ± 2) µs [20].

this value agrees with that determined by the timeamplitude analysis (see Fig. 7).

Finally, we analyze the energy spectrum of $\beta(\gamma)$ events selected with the help of the pulse-shape technique and presented in Fig. 9. The background in the very low energy part of the β spectrum (see inset in Fig. 9) is mainly due to the β decay of ²¹⁰Pb ($Q_{\beta} = 64 \text{ keV}$), whose measured activity is consistent with that determined from the α peak of ²¹⁰Po. The counting rate for the $\beta(\gamma)$ spectrum above 0.2 MeV is $\approx 0.45 \text{ counts}/(\text{s kg})$. The contribution of the external γ rays to this background rate was estimated to be as small as $\approx 2\%$, by using the results of measurements with a CdWO₄ crystal (mass of 0.448 kg) installed in the same low background set-up (see Fig. 5).

Therefore, the remaining $\beta(\gamma)$ events are caused by the intrinsic contaminations of the CaWO₄ crystal. The major part of this β activity can be ascribed to: ²¹⁰Bi, daughter of ²¹⁰Pb (≈ 0.3 Bq/kg); ^{234m}Pa (≈ 14 mBq/kg); ²¹⁴Pb and ²¹⁴Bi from ²³⁸U family (≈ 9 mBq/kg); ²¹¹Pb from ²³⁵U chain (≈ 2 mBq/kg). The residual

Fig. 9. Energy spectrum of the $\beta(\gamma)$ events selected by the pulseshape analysis technique from the background data measured during 1734 h with the CaWO₄ detector. The distribution is described by the β spectra of ²¹⁰Bi, ²¹⁴Pb, ²¹¹Pb, ^{234m}Pa, and ²¹⁴Bi. (Inset) In the low energy region, the background (measured during 15.8 h) is caused mainly by β decay of ²¹⁰Pb.

($\approx 0.13 \text{ Bq/kg}$) can be explained by larger activity of ²¹⁰Bi (assuming broken equilibrium in the ²¹⁰Bi \rightarrow ²¹⁰Po chain), and/or by the presence of other β active impurities (⁴⁰K, ⁹⁰Sr, ¹³⁷Cs) in the crystal.

In the high energy region of the $\beta(\gamma)$ spectrum (3.6–5.4 MeV), which is the region of main interest in the search for the $0v2\beta$ decay of ⁴⁸Ca, there are only 5 background counts. At the same time, in the same energy interval of initial spectrum (Fig. 5), there exists a broad distribution. It can be attributed to: (i) the $\beta \rightarrow \alpha$ decays of ${}^{214}\text{Bi} \rightarrow {}^{214}\text{Po}$ \rightarrow^{208} Pb (²³⁸U chain). These events were tagged by the time-amplitude and pulse-shape discrimination techniques as described above; (ii) the fast $\beta \rightarrow \alpha$ sequence of ²¹²Bi $(Q_{\beta} = 2254 \text{ keV}) \rightarrow ^{212}\text{Po}$ $(E_{\alpha} = 8784 \text{ keV}, T_{1/2} = 0.299 \,\mu\text{s}) \rightarrow ^{208}\text{Pb}$ (²³²Th family). As two decays in the last (and fast) chain cannot be time-resolved in the CaWO₄ scintillator (with decay time $\simeq 9 \,\mu s$), they will result in one event registered in the detector. However, because the shape indicator of such an event is different from that for pure α and β pulses, this component of the detector background was effectively rejected by the pulse-shape analysis. The five counts, remaining in the 3.6-5.4 MeV interval, most probably belong to the β decay of ²⁰⁸Tl, the contribution of which could be minimized by

Table 3 Radioactive contaminations in CaWO₄ and CdWO₄ [8,23–25] crystal scintillators in the present work

Chain	Nuclide	Activity (m	Activity (mBq/kg)		
		CaWO ₄	CdWO ₄		
²³² Th	²³² Th	0.69(10)	0.053(5)		
	²²⁸ Th	0.6(2)	$\leq 0.004 - 0.039(2)^{a}$		
²³⁵ U	²²⁷ Ac	1.6(3)	0.0014(9)		
²³⁸ U	²³⁸ U	14.0(5)	≤0.6		
	²³⁰ Th	_ ``	≤0.5		
	²²⁶ Ra	5.6(5)	≤0.004		
	²¹⁰ Pb	≤430	≤0.4		
	²¹⁰ Po	291(5)			
	^{40}K	≤12	0.3(1)		
	⁹⁰ Sr	≤70	≤0.2		
	¹¹³ Cd	_	580(20)		
	113m Cd		1-30 ^a		
	¹³⁷ Cs	≤0.8	≤0.3–0.43(6)		
	¹⁴⁷ Sm	0.49(4)	≤0.04		

^aIn different crystals.

further reducing the 232 Th impurities in the CaWO₄ crystals. This is certainly feasible.

The summary of the measured radioactive contamination of the CaWO₄ crystal scintillator (or limits on their activities) is given in Table 3, again in comparison with the CdWO₄ detectors [8,23–25]. From this comparison one can see that radioactive impurities in the CaWO₄ crystals (available at present) are much higher (by factor of $10-10^3$) than those of the CdWO₄ scintillators.

3. Discussion

3.1. 2β decay of calcium and tungsten isotopes

CaWO₄ crystals contain several potentially 2β decaying nuclides which are listed in Table 4. As shown in Ref. [26], CaWO₄ scintillators provide an excellent opportunity to search for $0v2\beta$ decay of ⁴⁸Ca due to adequate energy resolution and promising background features. The energy resolution FWHM $\approx 2.9\%$ at the $Q_{\beta\beta}$ energy of ⁴⁸Ca was estimated by fitting the data measured with various γ -ray sources (see Subsection 2.1 and Fig. 1). Despite rather high radioactive contamination,

Table 4 2β unstable nuclides present in CaWO₄ crystals

Transition	Mass difference	Isotopic abundance	Decay
	(keV) [32]	(%) [19]	channel
$\begin{array}{c} \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$	193.78(0.29) 990.4(2.4) 4272(4) 146(5) 488.0(1.7)	96.941(0.156) 0.004(0.003) 0.187(0.021) 0.12(0.01) 28.43(0.19)	2ε $2\beta^{-}$ $2\beta^{-}$ 2ε $2\beta^{-}$

the background rate of the CaWO₄ detector (mass of 189 g) in the energy region 3.6–5.4 MeV, was reduced to the level of 0.07 counts/(yr keV kg) and the half-life limit $T_{1/2} > 6 \times 10^{19}$ yr at 68% CL was set for the neutrinoless 2β decay of ⁴⁸Ca [26]. With $\approx 100 \text{ kg}$ of enriched ⁴⁸CaWO₄ crystals (assuming their enrichment of about 90%, and radiopurity similar to that of the present CdWO₄ crystals) the sensitivity in terms of the half-life limit of the $0v2\beta$ decay is estimated as $T_{1/2}^{0\nu} \approx 10^{27}$ yr. The latter translates to constraints on the Majorana neutrino mass in the range (0.04-0.09) eV, depending on the nuclear matrix elements calculations used. The proposed technique with the ⁴⁸CaWO₄ crystal scintillators is very simple and reliable, thus, such an experiment can run stably for decades.

The double-beta processes in the tungsten isotopes were previously searched for with cadmium tungstate crystals [8,27]. Using non-enriched CaWO₄ detectors, with lower levels of radioactive contamination, the sensitivity to double-beta processes in ¹⁸⁰W and ¹⁸⁶W could be essentially improved comparatively to the previous experiment [8,27] due to the absence of the β active ¹¹³Cd and the $2v2\beta$ active ¹¹⁶Cd which are present in CdWO₄ detectors.⁷

3.2. $CaWO_4$ crystals as detectors for a dark matter search

 $CaWO_4$ is a promising material for dark matter detection. The reason is that this crystal scintillator can also work as cryogenic detector, and hence,

⁷The contribution from the $2\nu 2\beta$ decay of ⁴⁸Ca with half-life $\approx 4 \times 10^{19}$ yr [28,29] would be practically negligible taking into account a small isotopic abundance of ⁴⁸Ca.

666

allows one to detect phonon and scintillation light signals simultaneously. The latter could provide a powerful tool for discrimination of the effect (signals of recoil nuclei) from the background events caused by electrons, α particles, etc. [9,10]. Accordingly, there is an interesting possibility to search for spin-dependent inelastic scattering of WIMPs with excitation of low-energy nuclear ^{183}W CaWO₄ contains nuclide levels. $(\delta = 14.3\%)$ with a non-zero ground state spin $(1/2^{-})$ and the first excited state $(3/2^{-})$ at 47 keV (M1 transition). Therefore, searches for spindependent inelastic scattering of WIMPs, with excitation of low-energy nuclear level at 47 keV of the ¹⁸³W can be realized by using the cryogenic technique. Identification of "mixed" (nuclear recoil plus γ quanta) events could be possible due to the simultaneous registration of heat and light signals. The heat/light ratio for such events would differ from "pure" nuclear recoil or $\gamma(\beta)$ events [9.10].

However, the radioactive contamination of the crystals available now (e.g., studied in the present work and in Refs. [9,10]) is rather high, and must be substantially improved. A research and development program has been started, aiming to obtain CaWO₄ crystals less contaminated. As a first step, we plan to grow CaWO₄ crystals from raw materials of different producers, and to check their radioactive contamination and background. It should be stressed that the radiopurity level required for CaWO₄, has been already achieved with CdWO₄ [8,23-25] and ZnWO₄ [30] crystal scintillators. Apparently, the achievement of such a radiopurity will make calcium tungstate detectors (non-enriched isotopically) competitive for dark matter searches.

3.3. α decay of ^{180}W

An indication of the alpha decay of ¹⁸⁰W (the expected energy of alpha particles is 2460(5) keV, isotopic abundance of ¹⁸⁰W is $\delta = 0.12\%$), with a half-life $1.1^{+0.8}_{-0.4} \times 10^{18}$ yr, was previously obtained in measurements with low background CdWO₄ scintillators [14].

A peculiarity in the measured alpha spectrum of the CaWO₄ detector at the energy 447(8) keV (see

inset (b) in Fig. 6) corresponds to the α particle energy of 2471(30) keV. These alpha events can be attributed to the α decay of ¹⁸⁰W. The CaWO₄ detector contains 4.7×10^{20} nuclei of ¹⁸⁰W. The area of the peak is (38 ± 16) counts, which gives, taking into account 59% efficiency of the pulseshape selection technique, (64 ± 27) alpha decays. Thus, the half-life of ¹⁸⁰W obtained in the present experiment is $T_{1/2} = 1.0^{+0.7}_{-0.3} \times 10^{18}$ yr. This result is in agreement with that published earlier [14] and also with that reported very recently [31], where the alpha decay of ¹⁸⁰W with $T_{1/2} = 1.8^{+0.2}_{-0.2} \times 10^{18}$ yr has been unambiguously observed with the help of CaWO₄ cryogenic detector.

4. Conclusions

Scintillation properties of the CaWO₄ crystals were studied. The FWHM energy resolution of 7.2% and 3.8% for the 662 and 2615 keV γ -ray lines was obtained with a CaWO₄ crystal scintillator placed in a liquid and viewed by two PMTs. Shapes of the scintillation signals were investigated, and distinct pulse-shape discrimination for $\gamma(\beta)$ and α -decay events was achieved. Dependences of the α/β ratio and scintillation pulse shape on the energy of alpha particles were measured.

Radioactive contaminations of the CaWO₄ crystals were determined in the low background set-up installed in the Solotvina Underground Laboratory. CaWO₄ scintillators are considerably contaminated with uranium and thorium (particularly by ²¹⁰Po at the level of ≈ 0.3 Bq/kg). However, by applying the developed methods of pulse-shape discrimination and time-amplitude analysis of data, the background rate of the $\approx 0.19 \text{ kg}$ CaWO₄ detector in the energy region 3.6-5.4 MeV has been reduced down to 0.07 counts/(keV kg yr). It is one of the lowest background rates ever reached in double beta decay experiments with scintillators or semiconductor detectors. This fact demonstrates the potential of CaWO₄ crystals for 2β decay study of several potentially 2β active isotopes of calcium and tungsten, in particular, ⁴⁸Ca with the highest $Q_{\beta\beta}$ energy. The feasibility of a $0\nu\beta\beta$ -decay

experiment with ⁴⁸Ca awaits an efficient and affordable technique of isotopic enrichment of ⁴⁸Ca.

The indication for the alpha decay of ¹⁸⁰W was confirmed in the measurements with the CaWO₄ crystal. The half-life obtained in the present experiment is $T_{1/2} = 1.0^{+0.7}_{-0.3} \times 10^{18}$ yr.

The CaWO₄ crystals can also be used for the search of spin-dependent inelastic WIMP scattering on nuclei with nonzero spin (e.g., ¹⁸³W), which would provide a strong signature of the effect via registration of the nuclear recoil and subsequent low energy γ quanta.

References

- V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 61 (1995) 43;
- V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 80 (2002) 83.
- [2] Yu.G. Zdesenko, Rev. Mod. Phys. 74 (2002) 663.
- [3] J.D. Vergados, Phys. Rep. 361 (2002) 1.
- [4] S.R. Elliot, P. Vogel, Annu. Rev. Nucl. Part. Sci. 52 (2002) 115.
- [5] L. Bergstrom, Rep. Prog. Phys. 63 (2000) 793;
- L. Bergstrom, Nucl. Phys. B (Proc. Suppl.) 118 (2003) 329; Y. Ramachers, Nucl. Phys. B (Proc. Suppl.) 118 (2003) 341.
- [6] J. Suhonen, O. Civitarese, Phys. Rep. 300 (1998) 123.
- [7] Yu.G. Zdesenko, et al., J. Phys. G: Nucl. Part. Phys. 30 (2004) 971.
- [8] F.A. Danevich, et al., Phys. Rev. C 68 (2003) 035501.

- [9] M. Bravin, et al., Astropart. Phys. 12 (1999) 107.
- [10] S. Cebriàn, et al., Phys. Lett. B 563 (2003) 48.
- [11] R.J. Moon, Phys. Rev. 73 (1948) 1210.
- [12] R.H. Gillette, Rev. Sci. Instrum. 21 (1950) 294.
- [13] G.B. Beard, W.H. Kelly, Nucl. Phys. 16 (1960) 591.
- [14] F.A. Danevich, et al., Phys. Rev. C 67 (2003) 014310.
- [15] J.B. Birks, Theory and Practice of Scintillation Counting, Pergamon, London, 1964.
- [16] T. Fazzini, et al., Nucl. Instr. and Meth. A 410 (1998) 213.
- [17] E. Gatti, F. De Martini, Nuclear Electronics 2, IAEA, Vienna, 1962, p. 265.
- [18] Yu.G. Zdesenko, et al., Proceedings of the Second International Symposium on Underground Physics, Baksan Valley, USSR, August 17–19, 1987, Moscow, Nauka, 1988, p. 291.
- [19] K.J.R. Rosman, P.D.P. Taylor, Pure Appl. Chem. 70 (1998) 217.
- [20] R.B. Firestone, et al., (Eds.), Table of Isotopes, eighth ed., Wiley, New York, 1996.
- [21] F.A. Danevich, et al., Phys. Lett. B 344 (1995) 72.
- [22] F.A. Danevich, et al., Nucl. Phys. A 694 (2001) 375.
- [23] A.Sh. Georgadze, et al., Instrum. Exp. Tech. 39 (1996) 191.
- [24] S.Ph. Burachas, et al., Nucl. Instr. and Meth. A 369 (1996) 164.
- [25] F.A. Danevich, et al., Z. Phys. A 355 (1996) 433.
- [26] Yu.G. Zdesenko, et al., Astropart. Phys., submitted for publication.
- [27] F.A. Danevich, et al., Nucl. Phys. A. 717 (2003) 129.
- [28] A. Balysh, et al., Phys. Rev. Lett. 77 (1996) 5186.
- [29] V.B. Brudanin, et al., Phys. Lett. B 495 (2000) 63.
- [30] F.A. Danevich, et al., Nucl. Instr. and Meth. A., to be submitted for publication.
- [31] C. Cozzini, et al., nucl-ex/0408006.
- [32] G. Audi, A.H. Wapstra, Nucl. Phys. A 595 (1995) 409.